

OTIMIZAÇÃO DO PROCESSO DE OZONIZAÇÃO COMBINADO A CATALISADORES E ÓXIDOS METÁLICOS PARA TRATAMENTO DE LIXIVIADO DE ATERRO SANITÁRIO

Beatriz Lopes Corso (PIBIC/CNPQ-FA-UEM), Ana Paula Jambers Scandelai (DEQ/PEQ-UEM), Célia Regina Granhen Tavares (Orientadora), e-mail: célia@deq.uem.br

Universidade Estadual de Maringá / Centro de Tecnologia/Maringá, PR.

Engenharia Química – Tratamento e Aproveitamento de Rejeitos

Palavras-chave: Processos Oxidativos Avançados (POA), ozonização, ozonização catalítica.

Resumo:

O presente trabalho objetivou avaliar o tratamento do lixiviado gerado no aterro sanitário de Maringá-PR utilizando ozonização e ozonização catalítica (O₃/TiO₂, O₃/ZnO). A eficiência dos tratamentos foi avaliada por meio da redução de cor, turbidez, matéria orgânica (DBO, DQO, COD), nitrogênio amoniacal total (NAT), compostos que absorvem radiação UV-Vis₂₅₄ e substâncias húmicas. O processo de tratamento utilizando apenas ozonização foi mais eficiente que os demais processos catalíticos apresentando elevadas reduções de cor, turbidez, DBO e NAT.

Introdução

O lixiviado é o líquido gerado pela decomposição dos resíduos sólidos urbanos e uma das principais fontes de poluição em aterros sanitários. Possui cor escura e composição heterogênea, podendo apresentar elevadas concentrações de nitrogênio amoniacal total (NAT) e compostos orgânicos e inorgânicos de difícil degradação, como substâncias húmicas e ainda, metais (MORAIVA, 2010).

Os POA, como a ozonização, têm se destacado no tratamento de lixiviados, pois se baseiam na geração do radical hidroxil (•OH), um poderoso agente oxidante capaz de promover a degradação de poluentes em tempos reduzidos (EPA, 1998). A ozonização pode ser intensificada pela combinação com óxidos metálicos, como o TiO₂ e o ZnO.

Neste sentido, o objetivo deste estudo foi avaliar o tratamento do lixiviado do aterro sanitário de Maringá-PR, pelos POA de ozonização (O₃) e sua

combinação com óxidos metálicos (O₃/TiO₂ e O₃/ZnO), visando a melhoria da sua qualidade.

Materiais e métodos

Coleta e Tratamento do Lixiviado

O lixiviado foi coletado no aterro sanitário de Maringá–PR e os ensaios foram realizados no Laboratório de Gestão, Controle e Preservação Ambiental da UEM. Os experimentos foram realizados utilizando um reator em coluna, um concentrador de oxigênio (O_2) e um gerador de ozônio (O_3). O reator foi operado em regime batelada, utilizando-se um volume fixo de 5 litros de lixiviado e tempo de reação de 90 minutos. Os tratamentos utilizados foram: O_3 , O_3 + 0,5 g Ti O_2 L⁻¹ e O_3 + 0,5 g ZnO L⁻¹, todos com o pH original do efluente, próximo do neutro.

Controles Analíticos

Tabela 1 – Parâmetros avaliados e metodologias utilizadas

Parâmetro	Técnica Analítica	Equipamento		
Cor Verdadeira	Método platina-cobalto Método 8025 (HACH, 1996)	For a strafetâm etra		
Turbidez	Atenuação da radiação Método 8237 (HACH, 1996)	Espectrofotômetro HACH,modelo DR- 2010		
Demanda Química de Oxigênio (DQO)	Colorimetria Método 5220 D (APHA, 1998)	2010		
Compostos que absorvem radiação UV-Vis ₂₅₄	Absorbância molecular UV- Visem254 nm Método 5910B (APHA, 1998)	Espectrofotômetro HACH, modelo DR- 5000		
Demanda Bioquímica de Oxigênio (DBO ₅ ²⁰)	Método respirométrico Método 5210 D (APHA, 1998)	BODTrack [™] IIHACH		
Nitrogênio Amoniacal Total (NAT)	Métodos 4500-NH $_3$ D e E (APHA, 1998)	Eletrodo ThermoScientific, Orion Star 4		
Carbono Orgânico Dissolvido (COD)	Combustão a 680°C Método 5310 B (APHA, 1998)	Espectrofotômetro		
Substâncias Húmicas (SH)	Isolamento em resina XAD-8 Supelit TM (Supelco), Metodologia do IHSS	Shimadzu, modelo TOC-LCPH		

Nota: IHSS = InternationalHumicSubstancesSociety.

Resultados e Discussão

As características do lixiviado do aterro sanitário de Maringá-PR são apresentadas na Tabela 2.

Tabela 2 – Características do lixiviado do aterro sanitário de Maringá-PR

Parâmetro	Unidade	Lixiviado Bruto	
Cor Verdadeira	mg PtCo L ⁻¹	460	
Turbidez	NTU	390	
UV-Vis ₂₅₄	cm ^{−1}	4,94	
DQO	mg L⁻¹	1629	
DBO ₅ ²⁰	mg L⁻¹	534	
COD	mg L⁻¹	6285	
NAT	mg L⁻¹	1824	
SH	%	74	

Observa-se que o lixiviado em estudo apresenta elevadas concentrações de matéria orgânica, expressa por DQO, DBO e COD. O maior valor de DQO em relação à DBO indica a predominância de materiais não biodegradáveis sobre os biodegradáveis, indicando que os POA, como a ozonização, podem ser aplicados ao seu tratamento.

A Tabela 3 apresenta as características do lixiviado submetido aos processos de O₃, O₃/TiO₂ e O₃/ZnO.

Tabela 3–Características do lixiviado após os tratamentos

Parâmetro	O ₃		O ₃ + 0,5 g TiO ₂ L ⁻¹		O ₃ + 0,5 g ZnO L ⁻¹	
	Valor	Remoção (%)	Valor	Remoção (%)	Valor	Remoção (%)
Cor Verdadeira (mgPtCoL ⁻¹)	5	99	25	95	10	98
Turbidez (NTU)	9	98	25	94	19	95
UV-Vis $_{254}$ (cm $^{-1}$)	2,2	56	2,0	59	2,0	60
DQO (mg L ⁻¹)	1317	19	1238	24	1089	33
DBO (mg L ⁻¹)	16	97	10	98	11	98
COD (mg L ⁻¹)	4985	21	4150	34	4230	33
NAT (mg L ⁻¹)	321	82	285	84	110	94
SH(mgCODL ⁻¹)	3091	-	2241	-	2115	-
SH (%)	62	16	54	27	50	33

Por meio da Tabela 3, é possível observar que todos os tratamentos foram eficientes na remoção de cor e turbidez do lixiviado e alcançaram remoções satisfatórias de compostos que absorvem UV-Vis₂₅₄, considerados de difícil biodegradabilidade. Os processos catalíticos com TiO₂ e com ZnO não elevaram, de forma significativa, a remoção de tais parâmetros.

Os processos apresentaram elevada remoção de DBO, embora os processos catalíticos não tenham elevado sua remoção. Todos os tratamentos propostos apresentaram baixas remoções de DQO e COD, que pode ser decorrente da elevada presença de NAT no lixiviado bruto, interferindo na interação entre as moléculas de poluentes e o ozônio. Os POA, sobretudo a ozonização catalítica com ZnO, apresentaram elevadas remoções de NAT, indicando o potencial dos processos propostos na redução da toxicidade do lixiviado. Observa-se ainda, baixas remoções de substâncias húmicas pelos processos propostos, sobretudo pela ozonização.

Conclusões

O processo de ozonização iniciado em pH bruto mostrou-se mais eficiente que os processos catalíticos com TiO₂ e ZnO, para o tratamento do lixiviado do aterro sanitário de Maringá-PR, permitindo elevadas reduções de cor, turbidez, DBO e NAT, podendo ser aplicado como um processo de prétratamento do lixiviado em estudo.

Agradecimentos

Os autores agradecem à Fundação Araucária, à CAPES e à FINEP, pelo apoio financeiro.

Referências

APHA – American Public Health Association.**Standard methods for the examination of water and wastewater**.20. ed. USA: APHA, 1998.

EPA - Environmental Protection Agency. **Advanced Photochemical Oxidation Processes**, Handbook, Washington, US, 1998.

IHSS - International Humic Substances Society.**Isolation of IHSS aquatic humic** and fulvic acids.Disponívelem: http://www.humicsubstances.org/aquatichafa.html>. Acesso: 09/06/15

HACH Company. **Procedures Manual of Spectrophotometer DR/2010**.USA, 1996.

MORAVIA, W. G. Avaliação do tratamento de lixiviado de aterro sanitário através de processo oxidativo avançado conjugado com sistema de separação por membranas. 2010. 262f. Tese (Doutorado) - Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos, Universidade Federal de Minas Gerais, Belo Horizonte, 2010.