

ESTUDO DA COMPOSIÇÃO DE MEIOS DE CULTURA PARA PRODUÇÃO DE EXOPOLISSACARÍDEO POR Agrobacterium.

Patricia Satie Higashibara (PIBIC/CNPq-FA-UEM), Edeilza Gomes Brescansin (Co-orientadora), Márcia Portilho (Orientadora), e-mail: mportilho@uem.br.

Universidade Estadual de Maringá / Centro de Ciências da Saúde / Maringá, PR.

Ciências Biológicas, Microbiologia e Microbiologia Industrial e de Fermentação.

Palavras-chave: fermentação, exopolissacarídeo, Agrobacterium.

Resumo:

Exopolissacarídeos são polímeros microbianos, também denominados biopolímeros, podem ser biodegradáveis e biocompatíveis, características que os tornam de grande interesse industrial. Bactérias do gênero Agrobacterium são produtoras de polissacarídeos hidrossolúveis utilizados na indústria de alimentos e considerados ótimos agentes espessantes, gelificantes, estabilizantes, encapsuladores, conferindo propriedades funcionais responsáveis pela textura de diferentes alimentos processados. Também a indústria farmacêutica tem empregado tais polímeros como excipientes, antiparasitários, antitumorais, entre outras aplicações. Este trabalho teve como objetivo estudar a produção de exopolissacarídeos por duas linhagens de Agrobacterium a partir de um meio de cultura descrito em literatura, modificando a fonte de carbono e de nitrogênio. Quando se substituiu a fonte de nitrogênio, a melhor produção em polissacarídeos solúveis e insolúveis foi de 3,50% e 13,35% pela linhagem NBRC 13126, obtidas dos meios contendo NH₄NO₃ e NH₄Cl, respectivamente. Para a substituição da fonte de carbono, os melhores rendimentos foram de 1,03% e 0,35% para o polissacarídeo solúvel e insolúvel, respectivamente, quando se utilizou sacarose e a linhagem NBRC 13127. Estes rendimentos ainda são menores do que os rendimentos obtidos a partir do meio original citado na literatura, mostrando que não houve vantagem na substituição das fontes usuais de nitrogênio e carbono.

Introdução

Dois exopolissacarídeos (EPS) são produzidos por espécies de *Agrobacterium* ou *Alcaligenes faecalis*. Um deles, uma succinoglicana, com

propriedade de alta solubilidade em água e outro, denominado curdulana, com insolubilidade na água à temperatura ambiente e solubilidade em temperaturas superiores a 60 °C, formando um gel (JIANG, 2012). Essa propriedade lhe permite a possibilidade de utilização para melhorar a propriedade de textura, capacidade de reter água e estabilidade térmica de vários alimentos. Os dois EPS são biodegradáveis, comestíveis e não tóxicos para os seres humanos e o meio ambiente. Além da aplicação em alimentos, a literatura relata elevado potencial de uso na indústria farmacêutica por causa das suas propriedades de gelificação e espessante, além de atividade biológica (POPESCUA et al., 2013).

Para atingir a grande demanda dos EPS nessas aplicações e uso comercial, um processo eficiente de produção é indispensável. Tentativas estão sendo feitas para otimizar a sua produção. Estudos anteriores mostram que vários fatores afetam a produção de EPS, como a fonte de carbono, fonte de nitrogênio, concentração de fosfato, suprimento de oxigênio, e pH (SHIH et al., 2009; RAFIGH et al., 2014). O presente estudo teve por objetivo estudar meios de cultura para produção dos EPS descritos em literatura, modificando natureza das fontes de carbono e nitrogênio.

Materiais e métodos

Duas linhagens de *Agrobacterium* sp., obtidas do Biological Resource Center (NBRC), instituição japonesa foram utilizadas: NBRC 13126 e NBRC 13127, ativadas e mantidas em Ágar Nutriente.

O meio de fermentação utilizado foi o descrito por Nakanishi et al. (1976), modificando a fonte de nitrogênio e de carbono. Em substituição ao (NH₄)₂HPO₄, como fonte de nitrogênio empregou-se: NH₄Cl, (NH₄)SO₄ ou NH₄NO₃. Em substituição à glicose, como fonte de carbono utilizou-se a sacarose ou o melaço de cana-de-açúcar. De amostras coletadas do meio de fermentação inoculado com o microrganismo foram realizadas determinações de glicose por método enzimático ou de carboidratos totais antes e depois de 15 dias de incubação em estufa Shaker à temperatura de 32°C. Separou-se o meio de produção em sua fração solúvel e insolúvel em água à temperatura ambiente, das quais foram feitos testes quanto à capacidade do microrganismo em produzir EPS. A concentração destes foi calculada a partir da determinação de carboidratos totais das frações obtidas, realizada pelo método de Fenol-sulfúrico e o rendimento calculado.

Resultados e Discussão

Observando a Tabela 1 pode-se verificar que a linhagem NBRC 13126 foi a que apresentou melhor rendimento em ambas frações quando se empregou NH₄Cl. Já com (NH₄)₂SO₄, a linhagem NBRC 13126 apresentou

maior rendimento na fração insolúvel. No entanto, foi a linhagem NBRC 13127 que apresentou maior rendimento na fração solúvel. Para a fonte NH₄NO₃ verifica-se contrário: a fração solúvel com maior rendimento é apresentada pela linhagem NBRC 13126 e a fração insolúvel pela linhagem NBRC 13127. Também pode-se notar que consumo de glicose no meio com fontes de nitrogênio NH₄Cl e NH₄NO₃ foi maior em comparação ao meio com (NH₄)₂SO₄. Não foram encontrados dados de literatura para a comparação dos resultados.

Tabela 1 – Consumo de açúcares e rendimentos da fermentação, com fonte de nitrogênio modificada para NH_4CI , $(NH_4)_2SO_4$ ou NH_4NO_3 na produção de carboidrato solúvel e insolúvel pelas linhagens NBRC 13126 e NBRC 13127 de *Agrobacterium* sp.

Determinação	(NH ₄) ₂ HPO ₄ **		NH ₄ CI		(NH ₄) ₂ SO ₄		NH ₄ NO ₃	
	13126	13127	13126	13127	13126	13127	13126	13127
Consumo glicose %	32,76	23,26	74,55	77,83	55,84	19,31	80,91	100,00
Fração solúvel* %	7,71	7,05	2,21	1,83	1,65	2,55	3,50	1,80
Fração insolúvel* %	6,04	6,13	13,35	1,84	4,72	2,47	2,51	9,81

^{*}Rendimentos calculados em porcentagem com base na quantidade de açúcares consumidos (m/v).

Fonte: Dados da pesquisa.

Quando se fez a substituição da glicose por sacarose ou melaço de cana-deaçúcar, os melhores rendimentos foram de 1,03% e 0,35% para o polissacarídeo solúvel e insolúvel, respectivamente, quando se utilizou sacarose e a linhagem NBRC 13127 (Tabela 2). Entretanto, ainda com rendimentos menores se comparados à glicose utilizada no meio citado na literatura. Alguns estudos apontam os melaços como boas fontes de carbono, o que não foi observado no trabalho.

Tabela 2 – Consumo de açúcares e rendimentos da fermentação, com fonte de carbono modificada para sacarose ou melaço de cana-de-açúcar na produção de carboidrato solúvel e insolúvel pelas linhagens NBRC 13126 e NBRC 13127 de *Agrobacterium* sp.

HBRO 10121 do Agrobactoriam op.											
Determinação	Glicose**		Sacarose		Melaço						
Determinação	13126	13127	13126	13127	13126	13127					
Consumo açúcar %	42,36	45,61	34,51	35,64	8,76	7,98					
Fração solúvel* %	2,39	2,69	0,56	1,03	0	0					
Fração insolúvel* %	1,32	0,98	0,23	0,35	0	0					

^{*}Rendimentos calculados em porcentagem com base na quantidade de acúcares consumidos (m/v).

Fonte: Dados da pesquisa.

^{**}Fonte de nitrogênio do meio original descrito na literatura.

^{**}Fonte de carbono do meio original descrito na literatura.

Conclusões

Os resultados obtidos no presente estudo demonstraram a diferença de rendimentos na produção de EPS por *Agrobacterium* com a troca das fontes de nitrogênio e carbono. Apesar dos rendimentos superiores quando se utilizaram os compostos citados no meio original (literatura), conclui-se que é de interesse o estudo de fontes alternativas de nutrientes, especialmente a busca de compostos de menor custo e maior disponibilidade, como é o caso da sacarose como fonte de carbono.

Agradecimentos

Agradeço à Universidade Estadual de Maringá pela oportunidade e ao CNPq-FA-UEM pela concessão de bolsa.

Referências

SHIH, I. et al. Production and characterization of curdlan by *Agrobacterium* sp. **Biochemical Engineering Journal**, v. 43, p. 33-40, 2009.

NAKANISHI, I. et al. Demonstration of curdlan-type polysaccharide and some other β -1,3-glucan in microorganisms with aniline blue. **Journal of General Applied Microbiology**, v. 22, p. 1-11, 1976.

JIANG, L. Effect of nitrogen source on curdlan production by *Alcaligenes faecalis* ATCC 31749. **International Journal of Biological Macromolecules**, v. 52, p. 218-220, 2012.

RAFIGHA, S. M. et al. Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN. **International Journal of Biological Macromolecules**, v. 70, p. 463-473, 2014.

POPESCUA, I. et al. Phosphorylated curdlan microgels: Preparation, characterization, and in vitro drug release studies. **Carbohydrate Polymers**, v. 94, p. 889-898, 2013.