


PREPARAÇÃO DE FOTOCATALISADORES DE TIO2 DOPADO COM NITROGÊNIO VIA SCCO2 SENSÍVEIS A LUZ VISÍVEL

Geisa B. Bevilaqua<sup>1</sup> (PIBIC/CNPq-UEM), Elisangela P. Silva<sup>1</sup> (PG/CAPES), Lúcio Cardozo Filho<sup>2</sup> (PQ), Adley F. Rubira<sup>1</sup> (Co-Orientador), Marcos H. Kunita<sup>1</sup> (Orientador), e-mail: mkunita@gmail.com

<sup>1</sup>Universidade Estadual de Maringá/CCE/Depto. Química/Maringá, PR.

<sup>2</sup>Universidade Estadual de Maringá/CTC/Depto. Eng. Química/Maringá, PR.

Área e subárea do conhecimento conforme tabela do <u>CNPq/CAPES</u> Química / Físico-Química / Química de Materiais

Palavras-chave: Nitrogênio, CO<sub>2</sub> supercrítico, Dióxido de titânio.

#### Resumo:

Nesse trabalho nanocatalisadores a base de TiO<sub>2</sub> dopado com nitrogênio foram sintetizados utilizando o processo sol-gel associado com a expansão em antissolvente supercrítico (SAS) e posteriormente realizado o tratamento térmico nas temperaturas de 350, 450, 550 e 650 °C. Estudos estruturais mostraram que a incorporação do nitrogênio na rede cristalina do TiO<sub>2</sub> através da oxidação da amônia foi obtida após tratamento térmico. A incorporação de nitrogênio reduz o *band gap* do TiO<sub>2</sub> trazendo a absorção desse semicondutor para a região do visível. Entretanto altas temperaturas causam a volatilização dessas espécies incorporadas. O material sintetizado mostra-se bastante promissor para aplicações fotocatalíticas na região do visível e em sensoriamento.

# Introdução

Óxidos metálicos em escala nanométrica são temas de grande interesse para os pesquisadores. As suas propriedades eletrônicas, óticas, magnéticas e químicas os tornam materiais empregados em muitas aplicações como catalisadores, sensores e dispositivos microeletrônicos para conversão de energia. O TiO<sub>2</sub> destaca-se entre esses óxidos, por ser relativamente de baixo custo, baixa reatividade química e de fácil processamento, além de possuir alta eficiência fotocatalítica. Uma grande desvantagem das partículas de TiO<sub>2</sub> é que seu uso é limitado a regiões do UV (λ<382 nm), que compreende somente cerca de 5% do espectro, isso porque apresenta uma alta energia de band gap (3.2 Ev).











Uma vez que a luz visível do espectro solar é considerada uma das principais fontes de energia sustentável,<sup>3</sup> uma alternativa para aumentar o campo de aplicação do TiO<sub>2</sub> no visível é realizar sua dopagem com elementos não metálicos. Entre os elementos não metálicos, o nitrogênio (N) é o mais eficaz, devido ao seu tamanho atômico comparável com o oxigênio e por possuir pequena energia de ionização e estabilidade.<sup>1</sup> O método sol-gel tem sido o mais utilizado para a síntese de partículas de TiO<sub>2</sub> dopadas com N, por apresentar vantagens como baixo custo e facilidade para aplicação industrial. No entanto, uma desvantagem é que essa técnica utiliza solventes orgânicos, o que causa grande impacto ambiental. Assim, em busca de tecnologias eco amigáveis para síntese de novos materiais, um método alternativo tem sido a precipitação das partículas em antissolvente supercrítico (SAS), no caso Sc-CO<sub>2</sub>, o qual extrai eficientemente o solvente orgânico.

#### Materiais e métodos

O fotocatalisador (TiO<sub>2</sub>-N) foi preparado em um equipamento Super Particle SAS, utilizando-se duas soluções: (i) 0,5 M de TIP em isopropanol sob atmosfera inerte e (ii) solução hidroalcóolica contendo NH<sub>4</sub>OH, fração molar NH₄OH/TIP (N/T) de 1:2. Utilizou-se uma fração molar água/TIP de 1:24. As duas soluções foram injetadas simultaneamente no vaso de precipitação sob pressão de 150 bar com vazão constante de 5 mL min<sup>-1</sup>, sendo a solução de TIP injetada através do tubo capilar e a solução hidroalcóolica injetada através do tubo de aço inoxidável. A alimentação de CO<sub>2</sub> ao vaso de precipitação foi realizada de modo contínuo com vazão de 40 g min<sup>-1</sup> a 40°C. A secagem das nanopartículas de TiO<sub>2</sub> dopadas foi realizada no próprio vaso de precipitação à temperatura de 40°C sob vazão de CO<sub>2</sub> igual a 20g min<sup>-1</sup> e pressão de 150 bar durante 240 min. Após o tempo de secagem o material dopado (TiO2-N) foi calcinado num forno a 350, 450, 550 e 650°C, respectivamente, por 2 horas. As nanopartículas de TiO<sub>2</sub> foram preparadas com e sem a presença de NH<sub>4</sub>OH. As amostras dopadas com N (TiO<sub>2</sub>-N) e calcinadas foram identificadas como TiO<sub>2</sub> N350, TiO<sub>2</sub>-N450, TiO<sub>2</sub>-N550, TiO<sub>2</sub>-N650.

#### Resultados e Discussão

As características das nanopartículas dopadas e calcinadas em várias temperaturas (350, 450, 550 e 650 °C) estão sumarizadas na Tabela 01.











**Tabela 1 -** Características das nanopartículas de TiO<sub>2</sub> dopadas com N e calcinadas em diferentes temperaturas

| Amostras               | DRX                           | BET                           |                               | DLS                            | Propriedade Óptica      |                         |                         |                         |
|------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                        | Tamanho<br>Cristalito<br>(nm) | Área<br>Superficial<br>(m²/g) | Diâmetro<br>dos Poros<br>(nm) | Tamanho<br>Aglomerados<br>(nm) | λ <sub>g1</sub><br>(nm) | E <sub>g1</sub><br>(eV) | λ <sub>g2</sub><br>(nm) | E <sub>g2</sub><br>(eV) |
| TiO <sub>2</sub>       | Amorfo                        | 449,5                         | 2,40                          | 316,7                          | 351                     | 3,53                    | -                       | -                       |
| TiO <sub>2</sub> -N    | Amorfo                        | 97,37                         | 3,18                          | 384,7                          | 342                     | 3,62                    | -                       | -                       |
| TiO <sub>2</sub> -N350 | 21,20                         | 22,90                         | 3,58                          | 851,9                          | 388                     | 3,19                    | 508                     | 2,44                    |
| TiO <sub>2</sub> -N450 | 23,10                         | 22,0                          | 3,61                          | 1046,7                         | 384                     | 3,23                    | 505                     | 2,46                    |
| TiO <sub>2</sub> -N550 | 33,40                         | 14,31                         | 3,59                          | 1242,8                         | 380                     | 3,26                    | 430                     | 2,88                    |
| TiO <sub>2</sub> -N650 | 38,60                         | 11,43                         | 3,99                          | 2079,9                         | 385                     | 3,22                    | -                       | -                       |

A estrutura cristalina das nanopartículas de TiO<sub>2</sub> e TiO<sub>2</sub>-N foram acompanhadas por difração de raios-x. A partir dos difratogramas foi possível calcular o tamanho médio dos cristalitos através da equação de Scherrer. Os resultados de DRX (Tabela 01) revelam que a presença de nitrogênio e a temperatura de calcinação desempenham um papel significativo na estrutura cristalina e no tamanho dos cristalitos formados. Altas temperaturas favorecem o crescimento da fase rutilo e um maior tamanho de partícula.

As imagens de MET das amostras de TiO<sub>2</sub> dopadas com N e calcinadas permitiram observar partículas com tamanhos em escalas nanométricas e de formato esférico. No entanto, conforme a temperatura é elevada, uma quantidade maior de cristalitos é formada, e há uma maior aglomeração das partículas, pois em temperaturas elevadas ocorre o efeito de sinterização, o qual pode ser comprovado através dos resultados obtidos pela análise de DLS (Tabela 01) e corroboram com os resultados de DRX.

A área superficial (BET) e o diâmetro médio dos poros (BJH) foram calculadas para as amostras sintetizadas (Tabela 01). Observou-se que o aumento da temperatura de calcinação causa uma redução na área superficial e uma tendência no aumento do tamanho do poro dos catalisadores. Isso está relacionado ao colapso da estrutura mesoporosa devido às altas temperaturas de calcinação. Comparando as amostras antes e após a dopagem e sem calcinação, também observa-se que houve uma redução na área superficial após a dopagem com N, pois a dopagem











reduz a porosidade do material e menos N gasoso é adsorvido durante a análise.

O band gap (Eg) das amostras de TiO<sub>2</sub> dopados antes e após a calcinação foram calculados e são mostrados na Tabela 01. Os resultados revelam que a dopagem com N causa a formação de um novo estado eletrônico acima da banda de valência, o que reduz a fotoenergia para excitar os elétrons. Como resultado há um deslocamento da absorção para região do visível.

### Conclusões

Foi possível verificar que o processo sol-gel associado com expansão em antissolvente supercrítico para a incorporação do nitrogênio na rede cristalina do TiO<sub>2</sub> fornece um material bastante atrativo para aplicações fotocatalíticas na região do visível, além do mais, é uma metodologia limpa. Foi verificado que a temperatura de calcinação é um fator crucial para a obtenção de um material com boas atividades fotocatalíticas, uma vez que conforme aumenta-se a temperatura tem-se um efeito de sinterização e há a volatilização do nitrogênio, o que leva a uma perda de absorção na região do visível.

### **Agradecimentos**

Os autores agradecem à Universidade Estadual de Maringá, à CAPES, à Fundação Araucária e ao CNPq pelo apoio financeiro.

## Referências

[1] SUI, R.; CHARPENTIER, P. Synthesis of Metal Oxide Nanostructures by Direct Sol–Gel Chemistry in Supercritical Fluids. **Chem. Rev**., v. 112,p. 3057-3082, 2012;

[2] JAGADALE, T. C.; TAKALE, S. P.; SONOWANE, R. S.; JOSHI, H. M.; PATIL, S. I.; KALE, B.B.; OGALE, S. B. N-Doped TiO2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol–Gel Method. **J. Phys. Chem. C.**, v.112, p. 14595-14602, 2008;

[3] KUN, R.; TARJÁN, S.; OSZKÓ, A.; SEEMANN, T.; ZOLLMER, V.; BUSSE, M.; DÉKÁNY, I. Preparation and characterization of mesoporous N-doped and sulfuric acid treated anatase TiO2 catalysts and their photocatalytic activity under UV and Vis illumination. **J. Solid State Chem.**, v. 182, p. 3076–3084, 2009.







