

PESO RELATIVO DE ÓRGÃOS E COMPRIMENTO RELATIVO DE INTESTINO DE CODORNAS DE CORTE AOS 14 DIAS DE IDADE QUE FORAM ALIMENTADAS COM DIFERENTES NIVEIS DE METIONINA E CISTINA DIGESTIVEL

Bianca Cristina Maciel (PIBIC/CNPq/Uem), Daiane de Oliveira Grieser, Andressa Maria de Carvalho, Mariani Ireni Benites, Gabriela Fernandes da Cunha, Antonio Cláudio Furlan (Co-orientador), Simara Marcia Marcato(Orientadora), e-mail: simaramm@yahoo.com.br

Ciências Agrárias - Zootecnia - 50403010

Palavras-chave: Aminoácidos sintéticos, Coturnix coturnix sp., Peso de órgãos

Resumo

O trabalho avaliou o peso relativo de órgãos e comprimento relativo de intestino de codornas de corte que foram alimentadas com diferentes níveis de metionina digestível (Metd) e cistina digestível (Cisd). Foi utilizado um delineamento inteiramente casualizado, em um esquema fatorial 4x4, sendo os níveis de Metd 0,45; 0,57; 0,69 e 0,81% x Cisd 0,35; 0,48; 0,61 e 0,74% Ul/kg/ração. Utilizou-se 1.440 codornas de corte de 1 a 14 dias de idade, distribuídas em 16 tratamentos, três repetições e 30 aves por unidade experimental. Houve interação entre os níveis de Metd e Cisd somente para o CI, que apresentou um efeito linear negativo em função dos níveis de Metd e Cisd. O PIN e MO foram influenciados de forma quadrática em função dos níveis de Cisd nas rações, em que as estimativas de mínimo destes foram obtidas com rações contendo 0,65% e 0,60% de Cisd, respectivamente. O CR aumentou linearmente em função dos níveis de Metd. O FIG também apresentou efeito linear crescente, em função dos níveis de Metd e Cisd.

Introdução


O crescimento do mercado de codornas foi impulsionado pelo aumento do consumo de carne no país, atraindo o interesse de novos criadores. Os maiores gastos desta atividade se concentram na área da nutrição. Fica

clara a importância da necessidade de pesquisas para determinar as exigências nutricionais das codornas europeias nas condições climáticas do Brasil, com a finalidade de evitar o fornecimento de nutrientes nas rações em quantidades inadequadas. Não há relatos sobre a determinação da exigência de cistina para codornas de corte em crescimento, pois as pesquisas procuram determinar a exigência de metionina + cistina, atendendo à exigência de cistina através da suplementação de metionina (Lehninger e Cox, 2014). Levando em consideração que o desenvolvimento de órgãos e índices de desenvolvimento morfométrico são ótimos indicadores da capacidade digestiva das aves, e que isso influencia o desempenho zootécnico (Brito et al., 2004), o objetivo do trabalho foi verificar os efeitos dos níveis desses aminoácidos sobre o peso de órgãos e comprimento do intestino de codornas de corte aos 14 dias de idade.

Materiais e métodos

O experimento foi conduzido no setor de coturnicultura da Fazenda Experimental de Iguatemi, pertencente à UEM, e foram utilizadas 1.440 codornas de corte (Coturnix coturnix sp) de um dia de idade não sexadas. O delineamento adotado foi inteiramente casualizado em esquema fatorial 4x4 sendo quatro níveis de metionina digestível (0,50; 0,62; 0,74 e 0,86%) e quatro níveis de cistina digestível (0,40; 0,53; 0,66 e 0,79%), totalizando 16 tratamentos com três repetições e 30 codornas por unidade experimental. As rações experimentais foram formuladas à base de milho e farelo de soja, de forma a serem isocálcicas, isofosfóricas, isoenergéticas e isoproteicas, exceto para metionina e cistina digestíveis.

O peso relativo do coração (CR), fígado (FIG), moela (MO), intestino (PIN) e comprimento relativo de intestino (CI) foram avaliados aos 14 dias de idade, em duas codornas por repetição (um macho e uma fêmea). As codornas foram selecionadas pelo peso médio (± 5%) da repetição, submetidas a jejum (água ad libitum) (cinco horas) para completa eliminação do conteúdo do trato gastrointestinal. Posteriormente, as aves foram pesadas, sacrificadas, exsanguinadas, escaldadas (submersas em água a uma temperatura de 53-55°C/10 segundos), depenadas e evisceradas, por uma incisão na cavidade abdominal. As vísceras foram extraídas e pesadas em balança de precisão, sendo também medido o comprimento do intestino. Através desses dados foram determinados os pesos relativos desses órgãos e o comprimento relativo do intestino em relação ao peso vivo da ave.

Os dados do experimento foram analisados estatisticamente utilizando o software SAS.

Resultados e Discussão

Houve interação entre os níveis de Metd e Cist somente para o comprimento de intestino (CI), e peso de fígado (FIG) (Tabela 1), onde o CI apresentou um efeito linear negativo, e o FIG apresentou efeito linear crescente em função dos níveis de Metd e Cisd. Saki et al. (2011) sugeriram que o aumento do FIG pode ocorrer devido à absorção dos aminoácidos da dieta, que aumenta o metabolismo corporal, consequentemente a atividade do fígado, aumentando seu peso.

O peso de intestino (PIN) e peso de moela (MO) foram influenciados de forma quadrática em função dos níveis de Cisd nas rações. As estimativas de mínimo PIN e MO foram obtidas com rações contendo 0,65% e 0,60% de Cisd, respectivamente. O peso de coração (CR) aumentou linearmente em função dos níveis de Metd.

Tabela 1 - Valores médios de peso relativo de órgãos e comprimento relativo de intestino de codornas de corte aos 14 dias de idade em função dos níveis de metionina e cistina digestível

Metd (%)	etd (%) 0,50				0,62				0,74				0,86				- EP
Cisd (%)	0,40	0,53	0,66	0,79	0,40	0,53	0,66	0,79	0,40	0,53	0,66	0,79	0,40	0,53	0,66	0,79	EP
PV (g)	71,01	76,29	78,66	76,13	73,97	73,56	73,92	80,18	74,26	78,43	78,59	71,12	75,34	75,59	71,94	75,63	0,494
CR (%)	0,862	0,955	0,870	0,855	0,928	0,952	0,958	0,907	0,978	0,932	0,850	1,020	1,002	0,883	1,042	0,963	0,014
CI (cm)	85,40	77,25	78,08	79,90	84,07	80,11	80,02	74,85	79,29	76,32	74,09	79,44	79,99	78,48	80,32	80,64	0,697
PIN (%)	8,45	7,33	8,78	7,78	9,37	8,64	8,37	8,15	8,82	7,71	7,13	7 ,9 5	8,81	7,65	7,90	8,40	0,126
MO (%)	4,40	4,03	4,38	4,22	4,55	4,26	4,05	4,09	3,94	4,06	3,61	4,28	4,13	4,03	4,09	4,49	0,069
FIG (%)	3,77	3,78	3,71	3,74	3,86	3,79	3,87	3,88	3,75	3,64	3,92	4,28	3,84	3,93	4,06	4,13	0,046
Equações de regressão							\mathbb{R}^2	Estimativa			Valor de P						

Equações de regressão	K	Esimianva		valui de F			
		Metd	Cisd	Metd	Cisd	Metd*Cisd	
CR = 0.787340 + 0.218600Metd	0,96			0,019 (L)	NS	NS	
CI = 107,775 - 34,9571Metd - 44,6866Cisd + 54,0035Metd*Cisd	0,88			0,062 (L)	0,041 (L)	0,073	
$PIN = 14,3730 - 20,1825Cisd + 15,5617Cisd^{2}$	0,72		0,65%	NS	0,020 (Q)	NS	
$MO = 6,12157 - 6,99869Cisd + 5,87704Cisd^{2}$	0,93		0,60%	NS	0,078 (Q)	NS	
FIG = 3,15064 + 0,560718Metd + 0,553063Cisd	0,85			0,071 (L)	0,064 (L)	NS	

Erro padrão (EP); metionina digestível (Metd); cistina digestível (Cisd); interação entre os níveis de metionina e cistina digestível (Metd*Cisd); peso vivo (PV); peso relativo do coração (CR); comprimento relativo do intestino (CI); peso relativo do intestino (PIN); peso relativo da moela (MO); peso relativo do figado (FIG); coeficiente de determinação (R²); não significativo (NS); efeito linear (L) e quadrático (Q).

Conclusões

Conclui-se que as exigências de cistina digestível para o máximo peso relativo de codornas de corte foram de 0,65% para peso relativo de intestino e 0,60%, para peso relativo de moela.

Agradecimentos

CNPq pela concessão da bolsa PIBIC, à Universidade Estadual de Maringá e ao grupo de pesquisa de Codornas.

Referências

BRITO, A.B.; STRINGHINI, J.H.; CAFÉ, M.B.; XAVIER, S.A.G.; MURAMATSU, K. & ANDRADE, M.A. **Níveis de metionina + cistina em rações de frangos de corte na fase pré-inicial (1 a 7 dias)**. *Ars Veterinária*, **20**: 009-015, 2004.

LEHNINGER, D.L. & COX, M.M. **Princípios de bioquímica de Lehninger**. 6 ed. Porto Alegre: Artmed, 2014.

SAKI, A.A.; MIRZAAGHATABAR, F.; ZAMANI, P.; ALIARABI, H. & HEMATI MATIN, H.R. (2011) Energy utilization by chickens fed various levels of balanced methionine. *Global Veterinaria*, **7**: 276-282.

