

INFLUÊNCIA DO NÍVEL DE FLUORESCÊNCIA DA RESINA COMPOSTA NAS DIMENSÕES CAVITÁRIAS DURANTE A REMOÇÃO DE RESTAURAÇÕES ESTÉTICAS USANDO UM SISTEMA DE ILUMINAÇÃO AUXILIAR ACOPLADO À UMA TURBINA DE ALTA-ROTAÇÃO

Gabriela Nunes Zorzi (PIBIC/CNPq/FA/Uem), Marina França de Oliveira (PIBIC/CNPq/FA/Uem), Renata Corrêa Pascotto (Orientador), e-mail: gabinzorzi@gmail.com.

Universidade Estadual de Maringá / Centro de Ciências Biológicas e da Saúde/Maringá, PR.

Área e subárea do conhecimento: Odontologia\ Clínica Odontológica

Palavras-chave: resina composta, remoção de restaurações, luz ultravioleta.

Resumo:

A similaridade da cor da resina composta (RC) com o dente, pode gerar um desgaste desnecessário da estrutura dentária quando da substituição de restaurações. O objetivo deste trabalho foi avaliar *in vitro*, o efeito do uso de um sistema de iluminação ultravioleta auxiliar acoplado à uma turbina de alta rotação no aumento das dimensões cavitárias durante a remoção de restaurações anteriores confeccionadas com RC com diferentes fluorescências.

Setenta e dois dentes anteriores superiores artificiais divididos em seis grupos (n=12) foram montados em manequim e cavidades classe III foram confeccionas e restauradas com RC de diferentes fluorescências: G1UV e G1SL - RC de baixa fluorescência, G2UV e G2SL - RC de média fluorescência, G3UV e G3SL - RC de alta fluorescência. Nos grupos G1UV, G2UV e G3UV a remoção da RC foi realizada com um sistema de luz ultravioleta acoplado a uma turbina de alta rotação (Sistema Cobra Ultra Vision®, Gnatus) e nos grupos G1SL, G2SL e G3SL as restaurações foram removidas usando uma turbina de alta rotação sem iluminação adicional.

Os dentes foram pesados (mg) em balança analítica de precisão após o preparo cavitário e a remoção das restaurações. A diferença entre o peso inicial e o peso final foi submetida à análise estatística não paramétrica Kruskall-Wallis (p<0,05) e post-hoc de Bonferroni a fim de avaliar qual técnica proporcionou um preparo mais conservador. Os resultados demonstraram que a RC de média fluorescência proporcionou menor desgaste da estrutura dentária quando o sistema de luz auxiliar ultravioleta foi utilizado durante a remoção da restauração.

Introdução

A substituição de restaurações é frequente nos consultórios odontológicos e quando indiscriminada leva, invariavelmente, a um aumento nas dimensões da cavidade (FRANCO; PASCOTTO, 1990).

Um material restaurador altamente utilizado é a resina composta, e uma das grandes vantagens da utilização desse material é a ampla gama de cores que este oferece, de modo que, é capaz de aproximar a cor natural dos dentes. Para tanto, as propriedades ópticas devem ser consideradas. Dentre elas, a fluorescência, onde a luz é absorvida e refletida pelo dente (YU, LEE, 2012). No mercado, existem resinas com diversos níveis de fluorescência, ar que a percepção entre o dente e o material restaurador sob diferentes fontes de luz, seja mínima (BUSATO, 2006).

Recentemente foi introduzido no mercado uma turbina de alta rotação com um sistema de luz auxiliar (ultravioleta), que evidencia a fluorescência do material restaurador em contraste com o da estrutura dental facilitando a remoção seletiva do compósito e diminuindo desgastes desnecessários. Dessa forma, o objetivo deste trabalho foi avaliar a influência de um sistema de luz auxiliar (ultravioleta) acoplado a uma turbina de alta rotação no aumento da dimensão cavitária após a substituição de restaurações de Classe III de resina composta.

Materiais e métodos

Setenta e dois dentes anteriores superiores artificiais de plástico (Pronew) foram montados em um manequim odontológico (P-oclusal) e em uma cabeça simuladora. Em cada dente foi confeccionado uma cavidade classe III na face mesial sem a confecção de bisel, com acesso vestibular, utilizando-se pontas diamantadas esféricas 1014 montadas em uma turbina de alta rotação e refrigeradas com spray ar/água.

Após preparo e limpeza da cavidade, os dentes foram pesados em balança analítica de precisão e restaurados com 3 resinas compostas de diferentes níveis de fluorescência, seguindo a técnica adesiva e restauradora convencional. Os dentes foram divididos em seis grupos, (n=12) e restaurados com resina na cor A2, conforme a seguir: G1SL e G1UV - RC de baixa fluorescência Glacier (SDI); G2SL e G2UV - RC de média fluorescência Z250 (3M ESPE); e G3SL e G3UV - RC de alta fluorescência Charisma Diamond (Hereaus Kulzer). As restaurações foram removidas com ponta diamantada esférica 1014. Nos grupos G1SL, G2SL, G3SL utilizou-se uma turbina de alta rotação convencional, sem luz adicional e nos grupos G1UV, G2UV, G3UV as restaurações foram removidas usando uma turbina de alta rotação com o auxílio de um sistema de luz ultravioleta auxiliar (Sistema Cobra Ultra Vision®, Gnatus). Após a remoção das restaurações, os dentes foram novamente pesados em balança analítica de precisão. Os dados foram submetidos ao teste de normalidade Shapiro Wilk e

Os dados foram submetidos ao teste de normalidade Shapiro Wilk e analisados por meio do teste não paramétrico de Kruskal-Wallis (p<0,05) e post-hoc de Bonferroni.

Resultados e Discussão

O teste de Kruskal-Wallis mostrou diferença estatisticamente significante entre os grupos (p= 0,009). A tabela 1 apresenta as comparações múltiplas entre os grupos.

Tabela 1 - Comparações Múltiplas - Bonferroni mostrando a diferença entre os grupos restaurados com resinas de alta (G3), média (G2) e baixa fluorescência (G1) e removidos de forma convencional sem (SL) ou com (UV).

Fatores	Médias	Grupos	Fatores	Médias	Grupos
G1SL	25,33	С	G1UV	49	а
G2SL	46,67	ab	G2UV	24,92	С
G3SL	32	bc	G3UV	41,08	ab

Letras diferentes demonstram diferença estatisticamente significante entre os grupos (p<0,05)

Diante disso, torna-se evidente a necessidade de se testar novos métodos que possibilitem uma melhor diferenciação entre a resina e a estrutura dental, permitindo que os procedimentos odontológicos sejam realizados com maior eficiência e precisão (BUSH et al., 2010). Dentre esses métodos, o sistema de luz ultravioleta auxiliar demonstrou ser eficaz na remoção de

restaurações de resina de média fluorescência, produzindo um menor aumento na dimensão cavitária.

Conclusões

Os resultados demonstraram que a resina composta de média fluorescência proporcionou o menor desgaste da estrutura dentária quando o sistema de luz auxiliar ultravioleta foi utilizado durante a remoção da restauração.

Agradecimentos

Ao CNPq pelo apoio na concessão da bolsa de iniciação científica.

Referências

BUSATO, A. L. S. et al. Fluorescence Comparision Among Composite Resins and Sound Dental Structure – in vivo. Rev. Odont. Ata, v. 27, n. 2, p.142-147, Jul/Dez 2006.

BUSH, M. A. et al., The use of ultraviolet LED illumination for composite resin removal: an in vitro study. Gen Dent; p. 214-218, 2010.

FRANCO, E. B.; PASCOTTO, R. C. Motivos da realização e substituição de restaurações dentárias. Rev. Odont. USP, São Paulo, v.4, n.3, p. 234-240, jul./set. 1990.

YU, Bin; LEE, Yong-Keun. Comparison of stabilities in translucency, fluorescence and opalescence of direct and indirect composite resins. The European journal of esthetic dentistry: official journal of the European Academy of Esthetic Dentistry, v. 8, n. 2, p. 214-225, 2012.

