ESTUDO DA PURIFICAÇÃO DE ÉSTERES ETÍLICOS DA MACAÚBA PROVENIENTE DA TRANSESTESTERIFICAÇÃO POR CATÁLISE HETEROGÊNEA.

Carla Yuri Aoqui (PIBIC/CNPq/FA/Uem), Sérgio Henrique Bernardo Faria (Orientador), e-mail: shbfaria@uem.br.

Universidade Estadual de Maringá / Departamento de Engenharia Química/ Maringá, PR.

Engenharias/Engenharia Química

Palavras-chave: carvão ativado, biodiesel, adsorção

Resumo

A necessidade da utilização de combustíveis que possam ser produzidos a partir de fontes renováveis é imprescindível. É possível aplicar o biodiesel como alternativa ao diesel, obedecendo as normas impostas pela Agência Nacional do Petróleo e Gás Natural (ANP). Após a produção do biodiesel, este deve ser purificado a fim de atender as especificações da ANP. Visando a aprimoração da lavagem úmida e a obtenção de resultados dentro das especificações, realizou-se um estudo de adsorção, obtendo modelos cinéticos e de isotermas. Utilizou-se carvão ativado granulado como adsorvente e após o estudo da adsorção, os resultados apresentaram estabilização para o tempo de 120 minutos.

Introdução

As principais fontes de energia conhecidas atualmente são os combustíveis fósseis, que possuem uma reserva limitada. Este fator nos leva a busca de combustíveis que possam ser produzidos por fontes renováveis, tais como a biomassa, que pode ser obtida através de óleos vegetais (PETERSON, 1998). O presente trabalho tem como matéria prima o biodiesel proveniente do óleo extraído da polpa de macaúba, o qual foi produzido por transesterificação, lavado e purificado pelo processo de adsorção. Seu principal objetivo é a proposição de uma metodologia alternativa à lavagem aquosa para a purificação do biodiesel, utilizando o método da adsorção.

Materiais e métodos

O biodiesel proveniente do óleo da polpa de macaúba, obtido pela reação de transesterificação, passou por um processo de lavagem, e em

seguida, por um processo de adsorção, utilizando como adsorvente o carvão ativado granulado cedido pela Alpha Carbo (CA).

Para as análises de cinética de adsorção de glicerol, foram preparadas 8 amostras de 20g de biodiesel e 5% em massa do CA, os quais ficaram em contato em variados tempos de adsorção, a 25°C. Após a adsorção, o adsorvente foi separado por filtração comum, e o teor de glicerol residual foi determinado segundo a metodologia modificada baseada no método oficial da AOCS. Modelos cinéticos de pseudo-primeira ordem e pseudo segunda ordem de Lagergren (LAGERGREN, 1898) foram ajustados aos dados obtidos experimentalmente do glicerol residual.

Para as análises de isoterma de adsorção de glicerol, prepararam-se 10 amostras de 20g de biodiesel com variadas massas de CA. Utilizou-se o tempo de adsorção de 120min e, ao final deste, o adsorvente foi separado por filtração comum. Em seguida, determinou-se o teor de glicerol livre no biodiesel purificado. Os dados obtidos foram ajustados aos modelos de Langmuir e Freundlich.

Resultados e Discussão

A cinética de remoção do glicerol proveniente da adsorção é apresentada na Figura 1, na qual percebe-se que a diminuição do teor de glicerol do biodiesel é proporcional ao aumento do tempo de contato do mesmo com o adsorvente. O equilíbrio da cinética de adsorção foi atingido por volta dos 120 minutos, com teor de glicerol menor que 0,003%, índice abaixo do máximo permitido pela norma da ANP (0,02%). Ao final do tempo de adsorção foi possível obter um menor valor do índice de glicerol (0,0026%), o qual se encontra dentro do limite da ANP.

Segundo Weber e Smith (1986), a cinética do processo de adsorção depende da velocidade relativa entre o transporte no seio da solução. transporte por difusão através da camada limite, transporte entre poros da partícula e adsorção. Como a solução de biodiesel possui grandes moléculas de ésteres presentes e outros contaminantes, seu tempo de adsorção é de 120 minutos.

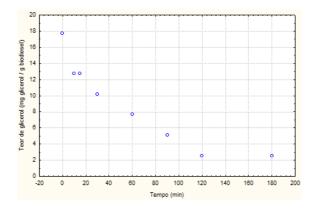


Figura 1 – Cinética de adsorção do glicerol no biodiesel do óleo de Macaúba: 25°C, (CA com 816,6 m²/g e diâmetro médio de poros de 11,19Å)

Aguiar (2013) utilizou a mesma metodologia modificada, da AOCS, para a determinação de glicerol livre após o processo de purificação do biodiesel do óleo de soja degomado e obteve um teor de glicerol de 0,078%, comprovando a eficiência da adsorção como metodologia complementar a lavagem. Com os resultados experimentais da cinética de adsorção do biodiesel foi possível determinar o modelo que melhor se ajustou. Na Tabela 1 estão descritos os parâmetros para os modelos de pseudo-primeira ordem e pseudo-segunda ordem de Lagergren, onde observa-se que o coeficiente de correlação R² do ajuste do modelo de pseudo-segunda ordem possui um valor superior ao do modelo de pseudo-primeira ordem. Entretanto, ao analisar o erro do parâmetro qe do modelo de pseudo-segunda ordem, é possível afirmar que os resultados mais confiáveis são dados pelos parâmetros cinéticos do modelo de pseudo-primeira ordem de Lagergren.

Tabela 1 – Parâmetros cinéticos de ajuste dos modelos de Lagergren.

	Parâmetros	Valor	Erro	R^2
Primeira ordem	k ₁	0.0161	0.0060	0.9112
	q_e	16.4234	2.7280	
Segunda ordem	k ₂	0.0007	0.0038	0.9166
	q_e	21.5006	35.4097	

Pela análise dos dados referentes à isoterma de adsorção foi possível determinar a saturação da dosagem de CA para adsorção de glicerol livre, que pode ser vista na Figura 2. É possível observar que o aumento da concentração de adsorvente provoca uma diminuição da concentração de glicerol livre na solução, entretanto, para concentrações maiores que 25g de adsorvente/L de solução, não houve aumento da adsorção. Este fenômeno pode ser explicado pela existência de forças de repulsão que o carvão ativado gera guando adicionado em excesso (RUTHVEN, 1984).

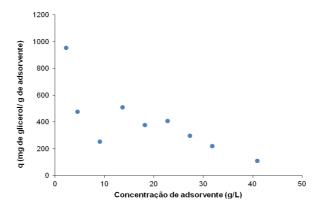


Figura 2 – Efeito da dosagem do carvão ativado

Os dados experimentais, correspondentes à adsorção no tempo de 120 minutos, não apresentaram precisão e não puderam ser representados pelos modelos de Langmuir e Freundlich propostos, o que pode ser explicado por eventuais erros experimentais do método titulométrico utilizado.

Conclusões

Os resultados obtidos demonstraram que os ésteres etílicos provenientes da esterificação do óleo da polpa de Macaúba estão dentro dos limites estabelecidos pela ANP. O tempo de equilíbrio observado para a cinética de adsorção do glicerol livre deste biodiesel foi de 120 minutos, em que o teor de glicerol foi abaixo de 0,003% e a curva cinética de adsorção foi melhor ajustada para o modelo de pseudo-primeira ordem de Lagergren. Ao construir um gráfico representando as isotermas de Freundlich e Langmuir observou-se que este não apresentava semelhança a nenhum modelo encontrado na literatura. Concluiu-se, pois, que os dados obtidos neste projeto não apresentam nenhuma isoterma.

Agradecimentos

Agradeço imensamente ao CNPq - Fundação Araucária pelo apoio financeiro, e aos professores e pós graduandos do DEQ pela oportunidade de aprendendizado.

Referências

- AGUIAR, D. R. Purificação de biodiesel por adsorção. Dissertação (Mestrado em Engenharia Química)- Universidade Estadual de Maringá, PR, 2013.
- LAGERGREN, S. (1898), Zur theorie der sogenannten adsorption gelöster stoffe, Kunglinga Svenka Vetenskapsakademiens. Handlingar, 24(4): 1-39
- PETERSON, C. L.; HUSTRULID, T. Carbon Cycle for Rapesseed Oil Biodiesel Fuels. Biomass and Bioenergy, v. 14, n. 2, p. 91-101, 1998.
- RUTHVEN, D. M. Principles of Adsorption and Adsorption Process. Wiley, New York (1984)
- WEBER, W. J.; SMITH, E. H. Activated Carbon: The State of the Art. Environmental Science, v.29, p. 455-492, 1986.

