ANÁLISE DA ARGAMASSA DE REVESTIMENTO COM SUBSTITUIÇÃO DO CIMENTO POR FINOS DE PEDREIRA E ADITIVO PLASTIFICANTE

João Pedro de Lima Miyazaki (PIBIC/CNPq- FA- UEM), José Aparecido Canova (orientador), email: jacanova@uem.br

Universidade Estadual de Maringá/Dept^o. de Engenharia Civil/Maringá, PR.

Área: Engenharia Civil e subárea: Construção Civil

Palavras Chave: exsudação, capilaridade, cal virgem.

Resumo: Uns dos resíduos pouco utilizados na construção civil, mas que vem sendo estudado por pesquisadores são os finos de pedreiras, com utilização como agregado miúdo, e que pode aumentar as propriedades mecânicas nas argamassas. Este trabalho tem como objetivo analisar propriedades desse resíduo passante na peneira de 0.075mm em substituição a percentagens de cimento em argamassa de revestimento com e sem aditivo plastificante. Para a mistura, foi utilizado cal virgem e areia natural de rio no traço 1:6 em volume. A argamassa simples maturada recebeu o cimento compondo o traço 1: 1,5: 9, em volume, no qual o cimento teve substituição por finos de pedreira nas percentagens de 2,5%, 5%, 10%, 15% e 20%. Avaliou-se á exsudação de água no estado fresco, e a absorção de água por imersão e a absorção de água por capilaridade no estado endurecido. Como resultado, as argamassas com finos de pedreira tiveram ligeiro aumento na absorção de água por imersão e absorção de água por capilaridade com queda na exsudação de água. Enquanto que propriedades estudadas com aditivo plastificante todas apresentaram queda em relação às argamassas sem plastificante.

Introdução

A produção da pedra britada gera a disposição de resíduos, como os finos de pedreira. Uma das alternativas é sua utilização nos setores da construção civil. Camarini e Ishikawa (2004) verificaram que o aumento do teor de material pulverulento em argamassas com areia de britagem de granito contribui para um maior empacotamento da mistura. Silva e Campiteli (2006) comprovaram que existe um teor ideal de material pulverulento da areia de origem calcária que otimiza as propriedades das argamassas de revestimento.

Materiais e métodos

Para a produção da argamassa utilizou-se da cal virgem comum, areia natural de rio, cimento Portland (CP II Z - 32) e do finos de pedreira com diâmetro inferior a 0,075 mm e aditivo plastificante. Inicialmente foi produzida

a argamassa simples de cal virgem e areia no traço 1:6 em volume. Procedeu-se a extinção e a maturação. A argamassa de referência (AR) foi ensaiada com cimento no traço 1:1,5:9 de volume para massa, posteriormente foram feitas as argamassas com substituição de 2.5%, 5%,10%,15% e 20% de cimento por finos de pedreira. Posteriormente as argamassas com as mesmas substituições, foram ensaiadas com 0.05% de aditivo plastificante para cada quilo de cimento. No estado plástico foi feito o ensaio de Exsudação de água que seguiu os métodos do texto RILEM MR -6:1982 . No estado endurecido, foram ensaiadas as propriedades de absorção de água por imersão e absorção de água por capilaridade, ensaios feitos de acordo com as normas ABNT NBR 9778:1987 e ABNT NBR 9779:1995 respectivamente.

Resultados e Discussões

1. Absorção de água por imersão

Os resultados dos ensaios de absorção de água por imersão, obtidos para as argamassas com e sem aditivo plastificante estão contidos na Figura1.

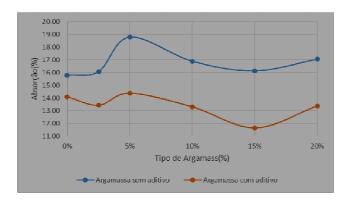


Figura 1- Resultados obtidos do ensaio de absorção por imersão

A partir da Figura 1 observa-se que houve uma tendência de acréscimo da absorção de água com 5% de substituição para ambos os casos com e sem aditivo plastificante, mas voltando a diminuir a partir dos 10% voltando a crescer com 20%. Com uma redução maior para as argamassas com aditivo plastificante.

2. Absorção de água por capilaridade

Os resultados obtidos do ensaio de capilaridade para as argamassas sem aditivo plastificante estão contidos na figura 2.

Pela figura 2, é possível perceber que a maior absorção de água por capilaridade, embora com um resultado de maior absorção para 2,5% de substituição tem tendências semelhantes à absorção por imersão, com

ligeiro aumento para uma percentagem mais baixa reduzindo aos 15% e tornando a aumentar com os 20%.

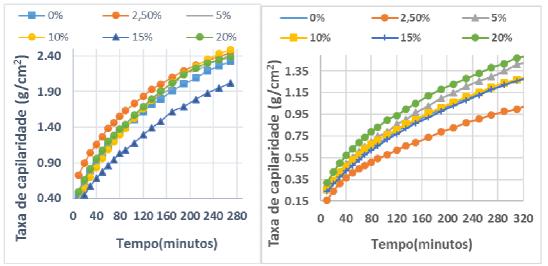


Figura 2 - Absorção de água por capilaridade das argamassas sem aditivo

3 -**A**bsorção Figura de capilaridade das argamassas com aditivo

Ao analisar a figura 3, da mesma forma que para a absorção de água por imersão houve queda nos valores obtidos para a absorção de água por capilaridade com tendências semelhantes com aumento com 5% de substituição e queda aos 15% e voltando a aumentar com 20%.

3. Exsudação da água

Os resultados obtidos no ensaio de exsudação estão contidos na Figura 4

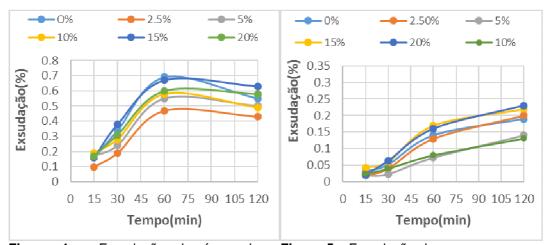


Figura 4 - Exsudação de água das argamassas sem aditivo plastificante

Figura 5 - Exsudação das argamassas com aditivo plastificante

Ao verificar a Figura 4, percebe-se que houve uma redução da exsudação de água para as argamassas com substituição do cimento pelo finos de pedreira, com maior redução para substituição de 2,5%.

Ao se fazer a análise da Figura 5, da argamassa com plastificante verifica-se que houve redução na exsudação de água em relação à argamassa sem o aditivo plastificante. Mas neste caso houve um aumento da exsudação com 120 minutos diferente das argamassas sem o plastificante.

CONCLUSÕES

De modo geral, as substituições de cimento por finos de pedreira apresentaram aumento da absorção de água por imersão e também para a absorção de água por capilaridade até a substituição de 5% do cimento pelos finos de pedreira, com um decréscimo para a substituição de 15%, mas voltou a aumentar. Já para exsudação de água das argamassas com finos de pedreira e sem aditivo plastificante ocorreu redução para a maioria dos teores em relação à argamassa de referência. Quanto às argamassas com finos de pedreira sem o aditivo plastificante ocorreu redução para todas as propriedades das argamassas aqui estudadas.

AGRADECIMENTOS

Ao PIBIC/UEM, ao CNPq e à Fundação Araucária, ao Prof. Dr. José Aparecido Canova pela orientação e à organização do projeto.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 9779**: argamassa e concreto endurecidos - Determinação da absorção da água por capilaridade. Rio de Janeiro, ABNT, 1995.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 9778**: argamassa e concreto endurecidos - Determinação da absorção da água por imersão – Índice de vazios e massa específica. Rio de Janeiro, ABNT, 1987.

CAMARINI, G.; ISHIKAWA, P. H. Propriedade de argamassas de assentamento produzidas com areia artificial para alvenaria estrutural. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, X., 2004, São Paulo. **Anais**. São Paulo: ENTAC, 2004.

RILEM - INTERNATIONAL UNION OF TESTING AND RESEARCH LABORATORIES FOR MATERIALS AND STRUCTURES – **MR** – **6.Tendency of water to separete from mortars (bleeding).** 1 st. Ed. France, 1982.

SILVA, N. G.; CAMPITELI, V. C. Influência dos finos e da cal nas propriedades das argamassas. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, XI.2006, Florianópolis. **Anais...** Florianópolis: ANTAC, 2006a. p. 4343-4358.

