

SISTEMA PARA VALIDAÇÃO DE SOLUÇÕES EM BASE DE BENCHMARK DO PROBLEMA DE ESCALONAMENTO DE MOTORISTAS

Thais Aparecida Silva Camacho (PIBIC/CNPq/UEM/CAP), Ademir Aparecido Constantino (Orientador), e-mail: ademir@din.uem.br.

Universidade Estadual de Maringá/Departamento de Informática

Ciências Exatas e da Terra / Ciência da Computação

Palavras-chave: problema de escalonamento, pem, testador de soluções.

Resumo

O problema de escalonamento de motoristas (PEM) é um problema computável que tem desafiado a computação por ser um tipo de problema de escalonamento muito complexo para ser solucionado por algoritmos exatos. A equipe deste projeto já teve alguns avanços científicos publicados em periódico internacional. Validar e avaliar as soluções obtidas também é um desafio pela sua complexidade. O objetivo deste projeto é desenvolver um testador de soluções para dar suporte às pesquisas que venham utilizar as instâncias de benchmark deste projeto.

Introdução

Em Constantino at. al. (2017) foi proposto um algoritmo heurístico para escalonamento de condutores de empresa de transporte público rodoviário baseado na resolução de sucessivos problemas de emparelhamento em grafos bipartidos. Este tema já gerou três dissertações de mestrado em Ciência da Computação da UEM. Nestes projetos foram utilizadas instâncias reais com até 2300 e 3400 viagens de uma grande empresa de transporte. No melhor do nosso conhecimento, estas são as maiores instâncias do problema que se tem conhecimento na literatura, sendo que outras instâncias conhecidas são inferiores a 20% da dimensão destas. A partir destas experiências prévias, publicadas por Constantino at. al (2017), também foram disponibilizadas as instâncias utilizadas. Para que estas instâncias se tornem uma base de benchmark útil para outros pesquisadores, torna-se importante, também, disponibilizar um testador de soluções para que outros pesquisadores possam validar e avaliar as soluções obtidas por seus métodos.

Materiais e Métodos

O testador foi implementado em C++ e utilizou-se dos recursos do formato .yaml do framework llvm. Os experimentos foram realizados com 4 casos de teste, com os seguintes parâmetros:

- Jornada de trabalho normal de motorista tem duração de 7 horas e 20 minutos (440 minutos);
- No máximo 2 horas (120 minutos) de horas extras;
- A duração máxima do trabalho contínuo é de 6 horas (360 minutos);
- A duração do descanso é no mínimo 90 minutos e no máximo 300 minutos;
- A extensão máxima da jornada, levando em consideração o tempo trabalhado e tempo de descanso, deve ser no máximo 13 horas (780 minutos).

Resultados e Discussão

Para o caso de teste 1, obteve-se os resultados apresentados na Tabela 1.

Jornada	Trabalho Contínuo	Intervalo de Descanso	Horas Extras	Tempo Total
0	75	285	0	485
1	220	0	0	220
2	245	0	0	245
3	305	90	210	740
4	300	145	195	780
5	130	0	0	130
6	160	0	0	160
7	140	0	0	140
8	360	175	0	615
9	120	145	195	780
10	105	225	95	760
11	285	170	130	740
12	140	0	0	140
13	110	165	150	755
14	145	0	0	145
15	140	220	105	765
16	360	90	0	530
17	195	150	95	685
18	115	0	0	115
19	190	0	0	190
20	125	0	0	125
21	130	0	0	130
22	230	0	0	230
23	165	0	0	165
24	180	235	0	630
25	310	105	95	640
26	160	0	0	160
27	305	170	155	765
28	175	170	115	725
29	120	0	0	120
30	305	210	125	775
31	115	0	0	115
32	130	0	0	130
33	95	105	225	770
34	85	95	220	755
35	50	240	75	755
36	305	105	145	690
37	30	215	100	755
38	115	0	0	115
39	310	95	230	765
40	155	0	0	155

41	36	104	236	780
42	35	220	70	730
43	230	90	165	695
44	75	150	120	710
45	50	90	180	710
46	345	180	0	595
47	330	235	100	775
48	80	90	105	635
49	295	245	0	685
50	15	200	85	725
51	325	180	85	735
52	50	145	150	735
53	90	125	130	695
54	185	95	180	715
55	300	90	0	485
56	80	110	95	645
57	80	135	110	685
58	290	0	0	290
59	175	120	0	520
60	80	200	0	615
61	295	90	0	430
62	165	90	0	450
63	-	ı	-	-
64	120	90	0	465
65	90	140	0	500
66	265	170	0	535
67	70	145	0	435
68	230	120	0	500
69	90	95	0	500
70	85	105	0	435
71	325	0	0	325
72	335	0	0	335
73	285	0	0	285
74	340	0	0	340
75	50	110	0	530
76	345	0	0	345
77	55	105	0	390

Tabela 1 - Resultados para cada jornada do caso de teste 1.

Nesse caso de teste, o testador acusou problemas na jornada 63. De fato, ao analisar a jornada 63, representada na Tabela 2, verifica-se que essa jornada precisa de descanso pois a jornada possui uma duração de 440 minutos e o trabalho contínuo não pode passar de 360 minutos.

Tarefa	Origem	Hora de Início	Destino	Hora de Término
1	G	16:35	Т	16:55
2	Т	16:55	Т	18:10
3	Т	18:30	Т	19:35
4	Т	20:25	Т	21:35
5	Т	23:00	Т	23:55

Tabela 2 - Escalonamento da jornada 63 do caso de teste 1.

Porém, perceba que existem três pontos de possíveis descanso, das tarefas: 2 para 3, 3 para 4 ou 4 para 5. Para os três casos temos que:

- De 2 para 3: Tarefa 2 termina às 18:10 e a tarefa 3 começa às 18:30. Tempo de descanso tem que ser no mínimo 90 minutos e, nesse ponto, o tempo de descanso seria de 20 minutos. Portanto, ponto de descanso inválido.
- De 3 para 4: Tarefa 3 termina às 19:35 e a tarefa 4 começa às 20:25. Tempo de descanso tem que ser no mínimo 90 minutos e, nesse ponto, o tempo de descanso seria de 50 minutos. Portanto, ponto de descanso inválido.
- De 3 para 4: Tarefa 4 termina às 21:35 e a tarefa 5 começa às 23:00. Tempo de descanso tem que ser no mínimo 90 minutos e, nesse ponto, o tempo de descanso seria de 85 minutos. Portanto, ponto de descanso inválido.

Portanto, o testador não conseguiu validar essa jornada, indicando que as restrições não estão sendo garantidas.

Conclusões

Este trabalho propôs um sistema de validação de soluções em base de benchmark do problema de escalonamento. Esse sistema, com base nos parâmetros configurados no arquivo de entrada, verifica se alguma restrição foi violada, permitindo a validação de uma solução.

Agradecimentos

Agradecemos a Capes, CNPQ e Fundação Araucária pela oportunidade que nos deram de ter acesso a novos conhecimentos que nos enriqueceram e com certeza nos ajudarão para o nosso desenvolvimento no futuro.

Referências

CONSTANTINO, A. A. et al. Solving a large real-world bus driver scheduling problem with a multi-assignment based heuristic algorithm. v. 23, n. 5, p. 479–504, may 2017.

