Avaliação acústica de teatros em madeira: estudo de caso do Teatro Oficina da Universidade Estadual de Maringá

Luana Lie Itami (PIBIC/CNPq/FA/Uem), Paulo Fernando Soares (Orientador), e-mail: luanaitami@gmail.com.

Universidade Estadual de Maringá / Centro de Tecnologia / Maringá, PR.

Engenharia Civil - Construção Civil

Palavras-chave: Teatro de madeira, Conforto Acústico, Caracterização acústica.

Resumo

Conforme Ogasawara (2006), o conforto acústico está fortemente relacionado à qualidade do espaço e à satisfação do usuário, principalmente quando a edificação se trata de um teatro, uma vez que o ambiente é destinado à transmissão de mensagens sonoras faladas, cantadas ou musicadas. Apesar da grande importância da acústica arquitetônica, esta temática possui uma carência literária e agrava-se conforme as especificações do ambiente aumentam. Com isso, o objetivo desta pesquisa é realizar uma avaliação acústica do auditório de madeira do Teatro Universitário da Universidade Estadual de Maringá (TUM-UEM) por meio do método impulsivo utilizando-se os parâmetros tempo de reverberação (TR), clareza (C50), definição (D80) e tempo de decaimento inicial (EDT).

Introdução

O conforto acústico pode ser estudado seguindo duas vertentes: Acústica Ambiental, que se refere a atenuação de ruídos alheios ao local, e Acústica de Salas, que analisa o controle de sons no recinto, sendo este último o foco desta pesquisa.

De acordo Pereira (2010), a qualidade acústica de uma sala é avaliada por meio de parâmetros, que podem ser divididos entre os objetivos, que correspondem a princípios físicos mensuráveis relacionados às características arquitetônicas do ambiente, e os subjetivos, que se referem à fatores psicofísicos pessoais do ouvinte em um determinado momento.

Logo, esta pesquisa de cunho descritivo e explicativo com abordagem quantitativa e natureza aplicada, busca caracterizar as condições acústicas do Teatro Universitário da UEM, avaliando o conforto dos usuários na edificação, aumentando o repertório de estudos sobre teatros de madeira e comparando diferentes meios de captação das ondas sonoras.

Materiais e métodos

A fim de atingir os objetivos propostos, a pesquisa utilizou o Método de Resposta Impulsiva Integrada na etapa de medição acústica do teatro, cuja norma ISO 3382-2:2008 define como um meio de medição que emprega de uma fonte impulsiva,

como o disparo de uma pistola, ou por meio de sinais acústicos especiais, para calcular parâmetros acústicos do ambiente.

Para isso, utilizou-se de uma fonte dodecaédrica e balões tamanho número nove, como fontes impulsivas; e um medidor 2270-1, juntamente do software Dirac[®], para captação destes impulsos e posterior cálculo dos parâmetros. Além disso, também se realizou uma medição utilizando-se o equipamento Phonic Paa3[®], possibilitando comparações entre resultados.

A partir dos dados coletados através das medições e visitas in loco, desenvolveu-se as análises destes dados na planilha Microsoft Office Excel[®]. Para uma maior organização, dividiu-se o diagnóstico em 4 itens: Medições, contendo todas as informações coletadas e calculadas; Calibração, em que se ajusta os coeficientes de absorção e propõe dois cenários: sala vazia e sala com 70% da ocupação; Análises Comparativas, que realçam o nível de eficiência entre os meios de captação utilizados; e Projeto, sendo esta a etapa final da pesquisa, cujo conteúdo abrange as intervenções necessárias para melhoria acústica do auditório.

Resultados e Discussão

Um dos resultados mais relevantes para esta pesquisa foram as medições de tempo de reverberação (T_{20} e T_{30}), juntamente do cálculo do tempo ótimo de reverberação, uma vez que deram embasamento para as análises da pesquisa (Tabela 01).

Tabela 01: Tempo de reverberação calculado pelo software Dirac_®

f [Hz]	t ₂₀ medido [s]	σ [s]	t ₃₀ medido [s]	σ [s]	t _{ORC} [s]		
		o [e] 130 meanae [e]		o [o]	Palavra	Música	
125	0,668	0,201	0,640	0,104	1,175	1,910	
250	0,624	0,139	0,606	0,064	0,970	1,576	
500	0,726	0,067	0,710	0,067	0,822	1,336	
1000	0,711	0,036	0,714	0,021	0,748	1,216	
2000	0,753	0,053	0,747	0,031	0,740	1,202	
4000	0,733	0,023	0,757	0,030	0,740	1,202	

Um dos resultados alcançados na pesquisa foi a multiplicidade de meios de medição, empregando um único método: Resposta Impulsiva Integrada, conforme é possível observar nas tabelas 02, 03 e 04, seja intervindo na fonte ou no medidor.

Tabela 02: Comparação entre o uso de fonte dodecaédrica e fonte balão como impulso na medição in loco para determinação do tempo de reverberação

impulse na medição in leve para determinação de tempo de reversoração							
Frequência [Hz]	125	250	500	1000	2000	4000	
F. dodecaédrica - t ₂₀ [s]	0,668	0,624	0,726	0,711	0,753	0,733	
F. balão - t ₂₀ [s]	0,622	0,647	0,720	0,730	0,764	0,738	
Desvio relativo t ₂₀ [%]	6,886	3,686	0,826	2,672	1,461	0,682	
F. dodecaédrica – t ₃₀ [s]	0,640	0,606	0,710	0,714	0,747	0,757	
F. balão – t ₃₀ [s]	0,637	0,640	0,739	0,720	0,781	0,757	
Desvio relativo t ₃₀ [%]	0,469	5,611	4,085	0,840	4,552	0	

Destaque em amarelo nos valores maiores que 5%

Tabela 03: Comparação entre o uso de fonte dodecaédrica e fonte balão como impulso na medição in loco para parâmetros subjetivos

Frequência [Hz]	125	250	500	1000	2000	4000
F. dodecaédrica - EDT [s]	3,957	3,448	3,390	3,598	3,751	3,576
F. balão - EDT [s]	0,775	0,725	0,723	0,628	0,763	0,710
Desvio relativo EDT [%]	80,414	78,973	78,673	82,546	78,633	80,145
F. dodecaédrica – C ₈₀ [dB]	-8,343	-8,299	-8,087	-8,089	-8,128	-8,034
F. balão – C ₈₀ [dB]	5,453	3,130	5,173	7,415	6,055	6,760
Desvio relativo C ₈₀ [%]	165,36	137,71	163,96	191,66	174,49	184,14
F. dodecaédrica – D ₅₀	0,086	0,076	0,078	0,087	0,088	0,091
F. balão – D ₅₀	0,608	0,470	0,530	0,718	0,638	0,688
Desvio relativo D ₅₀ [%]	606,97	518,42	579,48	725,28	625	656,04

Destaque em amarelo nos valores maiores que 5%

Tabela 04: Comparação entre o uso do Phonic Paa3_® e do Dirac_®

Frequência [Hz]	Medidor	t60 médio [s]	Desvio relativo [%]
500 a 1000	Phonic Paa3	0,752	3,439
000 a 1000	Dirac	0,727	0,400

Além disso, na pesquisa comparou-se os valores medidos in loco com os valores recomendados por norma ou estudos bibliográficos, tanto para parâmetros acústicos objetivos quanto para subjetivos (Tabelas 05 e 06).

Tabela 05: Diferença entre tempo de reverberação e tempo ótimo de reverberação para o cenário sala vazia

para e constrie cara vazia								
f [Hz]		125	250	500	1000	2000	4000	
t ₂₀ - t _{ORC} [s]	Palavra	0,505	0,342	0,095	0,035	0,014	0,006	
	Música	1,240	0,948	0,609	0,503	0,448	0,468	
T ₃₀ - t _{ORC} [s]	Palavra	0,533	0,361	0,111	0,031	0,007	0,018	
	Música	1,268	0,967	0,625	0,499	0,455	0,444	

Destaque em amarelo nos valores menores que 0,1s

Tabela 06: Diferença entre tempo de reverberação e tempo ótimo de reverberação para o cenário sala com 70% de ocupação

para o contanto cara com 1070 do coapação								
f [Hz]		125	250	500	1000	2000	4000	
t ₂₀ . t _{ORC} [s]	Palavra	0,550	0,421	0,121	0,090	0,001	0,034	
	Música	1,285	1,027	0,635	0,558	0,463	0,496	
T ₃₀ .t _{ORC} [s]	Palavra	0,575	0,435	0,136	0,088	0,008	0,012	
	Música	1,310	1,041	0,650	0,556	0,470	0,474	

Destaque em amarelo nos valores menores que 0,1s

Conclusões

Através dos resultados, observou-se que, ao mudar a fonte dodecaédrica para balões (tamanho número nove) e considerar um erro máximo de 5%, é possível realizar esta troca sem comprometer em demasia a precisão nos valores do tempo

28º Encontro Anual de Iniciação Científica 8º Encontro Anual de Iniciação Científica Júnior

10 e 11 de outubro de 2019

de reverberação, principalmente para as altas frequências. Recomenda-se que para as frequências mais baixas, realize-se uma maior quantidade de medições para reduzir a chance de erro amostral.

No entanto, este método não possui o mesmo efeito para parâmetros subjetivos (EDT, C_{80} e D_{50}), uma vez que seus valores são incertos e particulares do receptor. Ressalta-se a importância de apresentar alternativas devido ao alto preço de uma fonte dodecaédrica, o que incentiva àqueles que não possuem este equipamento a realizar pesquisas dentro da temática.

A mesma ideia ocorre ao substituirmos o software Dirac[®] pelo Phonic Paa3[®], que por realizar uma média do tempo de reverberação nas faixas de frequência de 500Hz a 1000Hz, logo, um menor detalhamento de medição, possui um valor mais baixo no mercado (até inexistente nessa versão de modelo, atualmente), mas com uma precisão semelhante ao software Dirac[®].

Por fim, pode-se destacar que se tratando da palavra falada, o teatro garante uma inteligibilidade eficiente em altas frequências, mas, como suas atividades envolvem também a musicalidade, que por sua vez possui um alto tempo ótimo de reverberação, sua condição acústica necessita a retirada de materiais absorsores, seja para o cenário sala vazia ou para a sala com 70% de ocupação, a fim de oferecer melhor conforto acústico aos usuários.

Agradecimentos

Primeiramente agradeço ao Professor Dr. Paulo Fernando Soares pela oportunidade em realizar esta pesquisa científica e por todo o apoio e empenho em suas orientações no desenvolvimento deste projeto;

À minha família e amigos pelo carinho, compreensão e incentivo para começar e finalizar este projeto;

A todos que contribuíram direta ou indiretamente no processo desta pesquisa.

Referências

OGASAWARA, A. P. Avaliação acústica de oito salas destinadas a apresentações teatrais da cidade de Campinas, SP, através da técnica impulsiva. 2006. 251f. Dissertação (Doutorado) - Programa de Pós-graduação em Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, Campinas, 2006.

PEREIRA, R. N. Caracterização Acústica de Salas. 2010. 107f. Dissertação (Mestrado) - Engenharia Física Tecnológica, Universidade Técnica de Lisboa, Lisboa, 2010.

ORGANIZACIÓN INTERNACIONAL DE NORMALIZACIÓN. **UNE EN ISO 3382-2:** Medición de parámetros acústicos en recintos. Parte 2: Tiempo de reverberación en recintos ordinarios. Madrid, 2008.

