

EFEITO DO PERÓXIDO DE HIDROGÊNIO NA ALTERAÇÃO TOPOGRÁFICA DA SUPERFÍCIE DE TITÂNIO

Camila Fernanda Vasconcelos (PIC/CNPq/UEM), Mychelle Vianna Pereira Companhoni, Flávia Matarazzo Martins (orientadora), e-mail: flamatarazzo@gmail.com

Universidade Estadual de Maringá/Centro de Ciências da Saúde/Maringá, PR Universidade Estadual de Maringá/Centro de Tecnologia/Maringá, PR Ciências da Saúde, Odontologia, Periodontia

Palavras-chave

Titânio, ligas de titânio, tratamento de superfície.

Resumo

Estudos in vitro utilizando diferentes combinações de métodos químicos, como o ácido cítrico, etanol, tricloroetileno, peróxido de hidrogênio e tratamento com laser de dióxido de carbono, estão se mostrando eficientes na alteração da superfície de titânio. Contudo, mais estudos são necessários para definição da concentração e tempo de exposição dos reagentes antes da indicação de seu uso. Sendo assim, este trabalho tem o objetivo de investigar o efeito do peróxido de hidrogênio na alteração da topografia da superfície de titânio. Discos de titânio, com diâmetro de 2 mm de espessura foram preparados e tratados com a combinação de ácido fosfórico e agente clareador (peróxido de hidrogênio). As alterações na topografia dos discos de titânio foram investigadas através de Microscopia Eletrônica de Varredura (MEV). Obtivemos como resultado a formação de uma camada de óxido de titânio em dois dos grupos teste, os quais receberam um tratamento químico com o ácido fosfórico e peróxido de hidrogênio duplo, respectivamente, também um tratamento duplo apenas de peróxido de hidrogênio. O estabelecimento de um método de produção da camada de óxido de titânio representa um progresso para a validação de um protocolo de tratamento para peri-implantite em humanos.

Introdução

O processo de osseointegração, produzida nos anos 60, por Branemark, representou um avanço significativo no tratamento de indivíduos parcial ou totalmente desdentados (BRANEMARK, 1969). A osseointegração apresenta resultados previsíveis, reproduzíveis e estáveis ao longo do tempo, com níveis de sucesso próximos dos 90% (ASHLEY, 2003). Isso se deve ao óxido de titânio, presente na superfície do implante, que pacifica agentes destruidores de tecidos, imediatamente após trauma inerente à implantação (EISENBARTH et al., 2002). Por outro lado, a contaminação bacteriana da superfície do implante desencadeia uma série de reações que resultam na dissolução da camada de óxido de titânio, levando a perda da osseointegração. A reconstituição natural dessa camada não é

possível (FAVERANI et al, 2013) impedindo a adsorção de derivados oxigenados e glicoproteínas ósseas na superfície do implante (KASEMO et al., 1988).

Estudos "in vitro", utilizando diferentes combinações de métodos químicos e físicos como o ácido cítrico, etanol, tricloroetileno, peróxido de hidrogênio (H₂O₂) e tratamento com laser de dióxido de carbono (CO₂), estão se mostrando eficientes na remoção de contaminantes e, subsequente, reconstrução do óxido na superfície das peças de titânio (MOUHYI et al., 2000). O uso de poderosos oxidantes, promove trocas de titânio e átomos de oxigênio através da camada superfícial de óxido de titânio, engrossando essa camada rapidamente, tornando a superfície favorável para a osseointegração (KASEMO et al., 1988). Apesar desses achados, poucos estudos examinaram a concentração ideal e o tempo de exposição ideal de H₂O₂ necessário para melhorar a osseointegração de titânio.

Sendo assim, o objetivo desse trabalho foi o de avaliar o efeito do peróxido de hidrogênio, presente em um gel clareador, na alteração topográfica da superfície de titânio.

Materiais e métodos

Para a análise da alteração topográfica na superfície do titânio provocada pela aplicação do ácido fosfórico e agente clareador (peróxido de hidrogênio), foram realizados cortes em cilindro de titânio grau 4. Posteriormente, a superfícies dos discos foram sequencialmente lixadas, polidas, limpas e os discos armazenados.

Os discos foram divididos em quatro grupos e receberam os seguintes tratamentos:

G1: controle negativo;

G2: tratamento com o agente clareador 35% (Clareador Whiteness HP – FGM), segundo as recomendações do fabricante;

G3: tratamento com o agente clareador 35% (Clareador Whiteness HP – FGM), segundo as recomendações do fabricante por 2 vezes;

G4: tratamento com ácido fosfórico (Condicionador Ácido Fosfórico Condac 37% - FGM) e o agente clareador 35% (Clareador Whiteness HP – FGM), segundo as recomendações do fabricante;

G5: tratamento com ácido fosfórico (Condicionador Ácido Fosfórico Condac 37% - FGM) e o agente clareador 35% (Clareador Whiteness HP – FGM), segundo as recomendações do fabricante por 2 vezes.

Após os tratamentos os discos foram avaliados por escaneamento com microscopia eletrônica de varredura (MEV).

Resultados e discussão

Através dos resultados das análises de MEV foi possível observar uma semelhança entre a topografia dos grupos 3 e 5, onde indicam haver rugosidades com uma profundidade média e com pequena semelhança entre picos e vales uniformes, indicando a modificação positiva da superfície do implante. Já os grupos 2 e 4, apresentaram uma superfície lisa, inalterada, semelhante a superfície do grupo 1, que representava o grupo controle.

Uma pesquisa buscou avaliar mudanças nas superfícies de ligas CP-Ti e Ti-6Al-4V

que foram expostas "in vitro" a refrigerante de cola, 16% e 35% de peróxido de carbamida ou peróxido de hidrogênio a 35% com ou sem exposição à saliva. No referido estudo, a rugosidade superficial foi promovida pelos agentes clareadores na superfície do Ti (FAVERANI et al., 2014).

Um estudo prévio também verificou o efeito do tratamento com peróxido de hidrogênio na superfície de titânio (NAGASSA et al., 2008). Esses autores observaram que a topografia e rugosidade da superfície e a composição química e espessura da camada de óxido são alterados pelo tratamento com peróxido de hidrogênio e influenciam mais na adsorção de proteína plasmática que na hidrofilicidade.

Conclusões

A alteração na superfície com o tratamento duplo com o peróxido de hidrogênio e com o tratamento duplo com a combinação do acido fosfórico e peroxido de hidrogênio indica uma maneira viável para o restabelecimento do elemento essencial da osseointegração, o óxido de titânio.

Agradecimentos

Agradeço às professoras Flavia Matarazzo Martins e Mychelle Vianna Pereira Companhoni pelo apoio e os conhecimentos a mim passados, além da grande oportunidade de fazer parte do desenvolvimento de uma técnica de tratamento muito promissora e relevante.

Referência

- 1. EISENBARTH, E., VELTEN, D., SCHENK-MEUSER, K., LINEZ, P., et al. Interactions between cells and titanium surfaces. Biomolecular Engineering, v.19, 2002. 243-249 p.
- 2. FAVERANI P. L., et al. Effect of bleaching agents and soft drink on titanium surface topography. Wiley Online Library, 2013. 22-30 p.
- 3. KASEMO B, LAUSMAA J. **Biomaterial and implant surfaces: on the role of cleanliness, contamination, and preparation pro-cedures.** J Biomed Mater, 1988; 22:145–158 p.
- 4.MOUHYI J, SENNERBY L, VAN RECK J. The soft tissue response to contaminated and cleaned titanium surfaces using CO2 laser, citric acid and

28º Encontro Anual de Iniciação Científica 8º Encontro Anual de Iniciação Científica Júnior

10 e 11 de outubro de 2019

hydrogen peroxide. An experimental study in the rat abdominal wall. Clin Oral Implants Res, 2000; 11:93–98 p.

5. NAGASSA, M. E., et al. **Optimisation of the hydrogen peroxide pre-treatment of titanium**: surface characterisation and protein adsorption. Clin. Oral Impl. Res. 19, 2008; 1317–13 26 doi: 10.1111/j.1600-0501.2008.01611.

