10 e 11 de outubro de 2019

DESEMPENHO PRODUTIVO, PARÂMETROS SÉRICOS E VIABILIDADE ECONÔMICA DE POEDEIRAS COMERCIAIS ALIMENTADAS COM O SUBPRODUTO DE SEMENTE DE MARACUJÁ

Élison Aparecido Santos da Silva (PIBIC/CNPq/FA/UEM), Marcia Izumi Sakamoto, Wellington Fernando Lemes da Costa, Alceu Kazuo Hirata, Alice Eiko Murakami (Orientador), e-mail: aemurakami@uem.br

Universidade Estadual de Maringá / Centro de Ciências Agrárias / Departamento de Zootecnia / Maringá, PR.

Área e subárea do conhecimento conforme tabela do <u>CNPq/CAPES</u>: 50403001 (Nutrição e Alimentação Animal)

Palavras-chave: bioquímico sérico, qualidade de ovos, subprodutos.

Resumo

Este trabalho teve como objetivo avaliar o efeito da inclusão do resíduo da semente de maracujá (RSM) na alimentação de poedeiras comerciais sobre o desempenho produtivo, qualidade de ovos, parâmetros sanguíneos e viabilidade econômica. Foram utilizadas 384 aves, da linhagem Hy-line W36, com 32 semanas de idade, em um delineamento experimental inteiramente casualizado, com seis tratamentos (controle; 2,5; 5,0; 7,5; 10,0; 12,5% de RSM), oito repetições e oito aves por unidade experimental. Não houve efeito (P>0,05) dos tratamentos sobre o percentual de postura e conversão alimentar, no entanto, o consumo de ração aumentou linearmente (P<0,05) com os níveis de inclusão do RSM. O peso do ovo, massa do ovo, percentagem e espessura da casca e Unidade Haugh não diferiram (P>0.05) com a utilização do RSM nas dietas. Por outro lado, a gravidade específica dos ovos aumentou linearmente (P<0,05) com a inclusão dos níveis do RSM. O colesterol total e triglicerídeos séricos apresentaram redução linear (P<0,05) à medida que o RSM foi incluído nas dietas. O RSM pode ser incluído nas dietas até o nível de 7,5% sem comprometer a conversão alimentar das aves. No entanto se considerar a viabilidade econômica e a qualidade dos ovos o melhor nível é de 12,5% de RSM.

Introdução

Os resíduos do processamento de frutas produzidos em grandes quantidades pelas indústrias alimentícias, podem ser utilizados como alimento alternativo na fabricação de rações para animais, reduzindo os custos com a alimentação. Dentre as frutas tropicais cultivadas no país, o maracujá se destaca sendo o Brasil o maior produtor mundial e também maior consumidor. Do processamento do maracujá para a extração de polpa, cerca de 70% do fruto é composto por cascas e sementes, tendo um grande volume de resíduos produzidos. Suas sementes podem ser consideradas como uma boa fonte de ácidos graxos essenciais, dentre eles o ácido

10 e 11 de outubro de 2019

linoleico (55 a 66%), ácido oleico (18 a 20%), ácido palmítico (10 a 14%) e em menor quantidade o ácido linolênico (0,8 a 1%) (Leonel et al., 2000). Diante do exposto o objetivo deste trabalho foi avaliar os efeitos da inclusão do resíduo da semente de maracujá (RSM) na alimentação de poedeiras comerciais sobre o desempenho produtivo, qualidade de ovos, parâmetros sanguíneos e viabilidade econômica.

Material e métodos

O experimento foi conduzido no setor de Avicultura da Fazenda Experimental de Iguatemi da Universidade Estadual de Maringá, sob aprovação da Comissão de Ética no Uso de Animais - CEUA/UEM (Parecer nº016/2014). Foram utilizadas 384 aves, da linhagem Hy-line W36, com 32 semanas de idade, distribuídas em um delineamento experimental inteiramente casualizado, com seis tratamentos (controle; 2,5; 5,0; 7,5; 10,0; 12,5% de inclusão do resíduo de semente de maracujá - RSM), com oito repetições e oito aves por unidade experimental. As dietas foram isoproteicas e isocaloricas, a base de milho e farelo de soja, formuladas para atender as exigências nutricionais da linhagem (Hy-Line W36) e a composição química dos alimentos de acordo com Rostagno et al. (2011). A composição química do RSM analisada no Laboratório de Análise de Alimentos e Nutrição Animal -LANA/UEM foi de 10,68% de proteína bruta, 18,84% extrato etéreo, 26,40% fibra bruta. Variáveis de desempenho (produção de ovos, consumo de ração e conversão alimentar) e qualidade dos ovos (peso e massa do ovo, gravidade específica, Unidade Haugh, porcentagem e espessura da casca) foram avaliados durante 3 ciclos de 28 dias cada, totalizando 84 dias. A Unidade Haugh foi obtida pela formula: UH= 100 x log (h + 7.57 - 1.7 p^{0,37}), em que: h se refere à altura do albumen (mm) e p representa o peso do ovo (g). Ao final do período experimental, foi selecionado uma ave por repetição para a colheita de sangue para obtenção do soro para análises de colesterol total e triglicerídeos (Gold Analisa Diagnostica Ltda, Belo-Horizonte – Minas gerais). A análise econômica foi calculada pela expressão adaptada de Guidoni et al. (1997), considerando somente os custos com a alimentação. Os dados obtidos foram submetidos a ANOVA e desdobrados em polinômios ortogonais, permitindo as análises de regressão (SAEG, 2007). Para comparação do tratamento controle com os demais níveis de RSM foi utilizado o teste de Dunnett a 5% de probabilidade.

Resultados e Discussão

Para a taxa de postura e conversão alimentar não houve diferença (P>0,05) dos níveis de RSM nas dietas, no entanto, para o consumo de ração houve efeito linear crescente (P<0,05) com o aumento dos níveis de RSM (Tabela 1). Quando comparado cada nível com o tratamento controle, os níveis de 10,0 e 12,5% de RSM pioraram (P<0,05) a conversão alimentar (kg/kg e kg/dz) e o consumo de ração. Este aumento pode estar atribuído ao alto teor de fibra solúvel na composição do RSM, tendo a pectina em maior quantidade (18,34%), aumentando a viscosidade da

digesta pelo trato gastrointestinal das aves, ocasionando um maior consumo de ração (Hetland et al., 2004).

Tabela 1. Desempenho de poedeiras comerciais alimentadas com dietas contendo níveis de inclusão do resíduo da semente de maracujá (RSM).

	Resíduo da semente de maracujá (%)									
	Contr.	2,5	5	7,5	10	12,5	CV (%)	Regres.		
CR (g/ave/dia)	100,8	99,92	100,47	100,18	103,63*	105,05*	3,89	L¹		
Postura (%)	92,85	90,18	90,16	91,46	90,83	92,37	4,51	NS		
CA (kg/kg)	1,653	1,745	1,775	1,792	1,794*	1,804*	5,44	NS		
CA (kg/dz)	1,307	1,357	1,374	1,376	1,393*	1,399*	4,01	NS		

^{*}Significativo pelo teste de Dunnett a 5% (P<0,05); CV = Coeficiente de variação; NS = Não significativo; L = Linear. ¹ Y= 97,824 + 0,5368x (R² = 0,83); CR= Consumo de ração: CA (kg/kg)= Conversão alimentar; CA (kg/dz)= Conversão alimentar;

Não foram observadas diferenças (P>0,05) para o peso do ovo, massa do ovo, percentagem e espessura de casca e Unidade Haugh. Entretanto, houve aumento linear (P<0,05) para a gravidade específica dos ovos conforme aumentaram os níveis de RSM incluídos nas rações (Tabela 2).

Tabela 2. Qualidade de ovos de poedeiras comerciais alimentadas com dietas contendo níveis de inclusão de resíduo da semente de maracujá (RSM).

	Resíduo da semente de maracujá (%)									
	Contr.	2,5	5	7,5	10	12,5	CV (%)	Regr.		
PO (g)	65,41	64,83	65,71	64,74	64,63	65,12	2,08	NS		
MO	61,04	58,03	59,24	59,21	58,71	60,12	4,88	NS		
UH	98,95	99,09	99,68	98,81	98,71	99,25	1,12	NS		
GE (g/ml)	1,080	1,080	1,080	1,081	1,081	1,082	0,09	L ¹		
% casca	8,791	8,787	8,736	8,912	8,857	8,951	2,42	NS		
EC(mm)	0,468	0,469	0,478	0,472	0,469	0,471	2,57	NS		

^{*}Significativo pelo teste de Dunnett a 5% (P<0,05); CV = Coeficiente de variação; NS = Não Significativo; L = Linear; 1 Y= 1,0793 + 0,0002x (R² = 0,89); PO = Peso do ovo; MO= Massa do ovo; UH= Unidade Haugh; GE= Gravidade especifica; EC= Espessura de casca;

Houve redução linear (P<0,05) para os valores de colesterol total (Y 1 = 116,18 - 2,8903x; R 2 = 0,91) e triglicerídeos (Y 2 = 1799 - 46,97x; R 2 = 0,85) sanguíneo com o aumento dos níveis de RSM. Quanto a análise econômica, foram utilizados os dados de dúzia de ovos produzidos e o consumo de ração para ajuste da equação, estimando o preço máximo do RSM a ser pago para cada nível de inclusão do mesmo. Com a aplicação dos preços médios dos ingredientes as equações ajustadas, foram constatados os índices de -0,22; -0,05; -0,07; +0,08 e +0,12 do RSM para os níveis de 2,5; 5,0; 7,5; 10,0 e 12,5%, respectivamente. Diante disso, níveis acima de 10% de inclusão de RSM se mostraram mais economicamente viáveis, justificando assim sua utilização até o nível de 12,5%.

Conclusões

O resíduo de semente do maracujá pode ser incluído nas dietas até o nível de 7,5% sem comprometer a conversão alimentar das aves. No entanto se considerar a viabilidade econômica e a qualidade dos ovos o melhor nível é de 12,5% de RSM.

Agradecimentos

Ao Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) pelo auxílio financeiro na concessão da bolsa.

Referências

GUIDONI, A. L.; ZANOTTO, D. L.; BELLAVER, C. Método alternativo na análise bioeconômica de experimentos com alimentação de suínos. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 34, 1997. **Anais...** Sociedade Brasileira de Zootecnia, Juiz de Fora, 1997. p.106.

HETLAND, H.; CHOCT, M.; SVIHUS, B. Role of insoluble non-starch polysaccharides in poultry nutrition. **World Poultry Science Journal**, v. 60, p. 415-422, 2004.

LEONEL, S.; LEONEL, M.; DUARTE-FILHO, J. Principais produtos e subprodutos obtidos do maracujazeiro. **Informe Agropecuário**, v. 21, p. 86-88, 2000.

ROSTAGNO, H. S.; ALBINO, L. F. T.; DONZELE, J. L.; et al., **Tabelas brasileiras** para aves e suínos: composição de alimentos e exigências nutricionais. Universidade Federal de Viçosa-UFV, Viçosa. p.186, 2011.

SAEG. **Sistema para Análises Estatísticas, Versão 9.1**: Fundação Arthur Bernardes - UFV - Viçosa, 2007.

