

PRODUTO FERMENTADO COM LEITE DE CABRA UTILIZANDO KEFIR E POLPA DE BETERRABA

Leonardo Augusto dos Santos (PIBIC/CNPq/FA/Uem), Bruna Moura Rodrigues, Magali Soares dos Santos Pozza (Orientador), e-mail: ra102821@uem.br.

Universidade Estadual de Maringá / Centro de Ciências Agrárias / Maringá, PR.

Ciência de Alimentos / Tecnologia de Alimentos

Palavras-chave: derivado lácteo, caprino, prebiótico

Resumo:

Na agropecuária mundial, a caprinocultura é a segunda atividade que mais cresce, o Brasil ainda representa uma pequena porcentagem dessa produção, além disso, aqui o leite ainda é majoritariamente comercializado como fluído e existe a demanda por produtos derivados como leites fermentados. O objetivo deste trabalho foi o de desenvolver um leite fermentado utilizando-se a polpa de beterraba (*Beta vulgaris* L.), no qual os grãos de kefir foram fermentados em leite de cabra, utilizando-se os seguintes tratamentos: kefir contendo 0%, 5% e 10% de adição de polpa de beterraba em pó. O experimento foi em esquema fatorial 3x4, sendo três tratamentos e quatro tempos de avaliação (0,7,14,21 dias). Foram avaliados os parâmetros: pH, acidez, potencial antioxidante, contagens microbiológicas, textura, cor instrumental e análise sensorial. O tratamento contendo a adição de 5% de polpa de beterraba propiciou maiores contagens microbiológicas; as amostras contendo beterraba estavam mais escuras, tendendo para o espectro vermelho e amarelo e obtiveram os menores valores para resiliência. A adição de polpa de beterraba influenciou negativamente a aceitação do produto.

Introdução

Segundo dados publicados pela Food and Agriculture Organization, das Nações Unidas, em 2014, no cenário agropecuário mundial, o rebanho de caprinos era da ordem de 1,06 bilhão de cabeças. No âmbito nacional, o Brasil possui 8,85 milhões de cabeças (FAO, 2016). A demanda por produtos, ditos como derivados do leite de cabra segue crescente no mercado ao longo dos anos, devido a preocupações causadas pela alergia ao leite bovino, já que o leite caprino tem uma reduzida ou inexistente quantidade de α-s1 caseína (MENDES et al, 2009).

Dentre os produtos lácteos fermentados mais populares, destacam-se o kefir, que além de serem fonte de proteínas e vitaminas, modulam de forma benéfica a microbiota intestinal por meio de doses repetidas (CANO-SANCHO et al., 2015). O kefir é composto por leveduras fermentadoras de lactose (*Kluyveromyces marxianus*) e leveduras não fermentadoras deste carboidrato (*Saccharomyces omnisporus*, *Saccharomyces cerevisae* e *Saccharomyces exiguus*). A inclusão da beterraba em alimentos se deve devido aos seus compostos bioativos, tais como as betalaína: betaxantina e a betacianina. O objetivo desta pesquisa foi desenvolver um

produto fermentado com leite de cabra utilizando kefir e polpa de beterraba em pó avaliando-se suas características físico-químicas, microbiológicas e sensoriais.

Material e métodos

O experimento foi conduzido no Centro Mesorregional de Excelência em Tecnologia do Leite (CMETL), localizado na Fazenda Experimental de Iguatemi – FEI/UEM. O leite de cabra UHT Caprilat® e a beterraba em pó 'Terra viva' foram adquiridos em comércio local. Foram adicionadas culturas probióticas pela adição de grãos de kefir (proporção de 3% m/v). A fermentação se deu a 25°C/48hs, os grãos foram filtrados, sendo o produto mantido sob refrigeração a 4°C por 24 horas e posteriormente procedeu-se a quebra da massa. Os tratamentos definidos foram: kefir adicionado de 0%, 5% e 10% de polpa de beterraba em sua composição.

Amostras dos leites fermentados foram mensuradas por meio dos valores de pH, utilizando-se pHmetro digital e a acidez titulável (graus Dornic) de acordo com o Instituto Adolfo Lutz (1985). A análise de cor instrumental, determinada em equipamento Minolta Chroma Meter (CR-400). A avaliação de capacidade da atividade antioxidante foi determinada pelo método ABTS 2,20-azino-bis (ácido 3-ethylbenzthiazoline-6-sulfônico). As amostras foram avaliadas microbiologicamente por meio da contagem total de aeróbios mesófilos, fungos filamentosos, leveduras e de bactérias ácido láticas (APHA, 1992). Para textura, utilizou-se o equipamento Brookfield CT3, sendo analisados gomosidade, mastigabilidade, coesividade e resiliência. Para todas as variáveis, as analises foram realizadas nos tempos 0, 7, 14 e 21 dias de armazenamento, exceto para ABTS, realizada nos tempos 0 e 21 dias.

Para a análise sensorial, participaram da pesquisa 102 provadores não treinados, estes avaliaram as amostras por meio da escala hedônica (1 a 9 pontos, onde 1 = 'desgostei muitíssimo' e 9 = 'gostei muitíssimo' Para intenção de compra, utilizou-se a escala onde 1 = 'certamente não compraria' e 5 = 'certamente compraria'. A análise dos resultados foi realizada pela Análise de Variância, seguida de um teste de Tukey a 5% de probabilidade (Sisvar 5.6).

Resultados e Discussão

Para cor instrumental, houve diferença significativa com relação à luminosidade (L), pois as amostras pertencentes ao tratamento controlem possuíam cor mais clara, devido aos maiores valores de L observados, e aquelas contendo inclusão de polpa de beterraba estavam mais escuras e tenderam para os espectros vermelho e amarelo.

Tabela 1 – Variáveis físicas do leite de cabra fermentado

TRAT	AL	рН	L	a [*]	b*
1	1,67 ^b	3,81°	85,47 ^a	6,81 ^b	8,53 ^b
2	1,74 ^a	4,00 ^a	37,06 ^c	22,04 ^a	22,04 ^a
3	1,73 ^a	3,91 ^b	42,51 ^b	21,85 ^a	22,44 ^a
P Trat	0,001	0,001	0,001	0,001	0,001
P Tempo	0,001	0,001			0,085
P Trat x	0,005	0.023			0,001
tempo					

Tratamentos (Trat): níveis de adição de beterraba 0% (1), 5% (2), 10% (3) Médias seguidas com letras iguais mesma coluna não diferem estatisticamente entre si em um nível de 5% de significância pelo teste de Tukey (p≤0,05). pH= R²= 0,93 efeito linear; Al= ácido lático R² 0,97efeito quadrático; L= preto-branco, a verde-vermelho b*= azul-amarelo.

Tabela 2: Interação Tratamento x Tempo para as variáveis físicas do kefir

	AL			рН			b*		
	1	2	3	1	2	3	1	2	3
TEMPO									
0	1,21 ^b	1,31 ^a	1,29 ^a	$3,97^{c}$	4,08 ^a	4,02 ^b	8,91 ^b	22,24 ^a	22,70 ^a
7	1,37 ^{ab}	1,41 ^{ab}	1,32 ^b	3,91°	4,04 ^a	$3,98^{b}$	6,63 ^b	22,54 ^a	23,12 ^a
14	1,85 ^b	1,96 ^a	1,95 ^a	3,81 ^c	4,02 ^a	3,86 ^b	$9,33^{b}$	21,95 ^a	22,21 ^a
21	2,25 ^b	2,29 ^{ab}	2,35 ^{cb}	3,56 ^c	3,87 ^a	3,78 ^b	9,23 ^b	21,45 ^a	21,73 ^a

Tratamentos: níveis de adição de beterraba 0% (1), 5% (2), 10% (3) Médias seguidas com letras iguais mesma linha não diferem estatisticamente entre si a 5% de significância pelo teste de Tukey (p≤0,05). Al= ácido lático, b*= azul-amarelo

Com relação às contagens microbiológicas, o tratamento mais efetivo foi o que continha 5% de polpa de beterraba, propiciando maior crescimento microbiano, contatando-se seu efeito prebiótico.

Tabela 3 – Valores médios das contagens microbiológicas (log₁₀) e de textura do kefir

TRAT	AE	BL	BAL	RES
1	6,48 ^b	6,36°	6,51 ^b	0,71 ^a
2	6,74 ^a	6,76 ^a	6,67 ^a	0,26 ^c
3	3,63 ^c	6,49 ^b	5,57 ^{ab}	0,47 ^b
P Trat	0,001	0,001	0,003	0,001
P Tempo	0,001	0,001	0,001	ns
P Trat x tempo	0,020	0,001	0,011	0,0187

Tratamentos (Trat): níveis de adição de beterraba 0% (1), 5% (2), 10% (3) Médias seguidas com letras iguais mesma coluna não diferem estatisticamente entre si a 5% de significância pelo teste de Tukey (p≤0,05). AE= aeróbios mesófilos R² 0,88 efeito linear, BL= bolores e leveduras R² 0,91 efeito quadrático, BAL= bactérias ácido láticas R² 0,91 efeito quadrático, RES= resiliência. ns= não significativo

Tabela 4 – Interação Tratamento x Tempo para as contagens microbiológicas (log₁₀) e de textura

		AE			BAL			BL			RES	
	1	2	3	1	2	3	1	2	3	1	2	3
Dias												
0	6,75 a	5,75 b	5,45 c	5,93 a	5,48 b	5,93 a	5,51 ab	5,37 b	5,47 ab	0,62 ab	0,31 b	0,47 ab
7	6,17 a	5,27 a	6,18 a	6,70 a	6,66	6,60 a	6,67 a	6,57 a	6,68 a	0,81 a	0,12 c	0,57 b
14	6,41 a	6,48 a	6,51 a	6,70 a	6,60 a	6,74 a	6,66 a	6,52 b	6,77 a	0,71 a	0,20 c	0,42 b
21	6,60 c	8,48 a	6,92 b	6,70 c	7,95	7,02 b	6,59 ^c	8,59 a	7,04 b	0,66 a	0,41 b	0,44 b

Tratamentos: níveis de adição de beterraba 0% (1), 5% (2), 10% (3) Médias seguidas com letras iguais mesma linha não diferem estatisticamente entre si a 5% de significância pelo teste de Tukey (p≤0,05). AE= aeróbios mesófilos, BL= bolores e leveduras, BAL= bactérias ácido láticas, RES= Resiliência (%).

Sobre os parâmetros de textura, houve diferença significativa entre os tratamentos somente para a variável resiliência (P=0,001) sendo obtido os maiores valores médios para o tratamento controle. Para os valores de ABTS houve diferença apenas entre os tratamentos (P= 0,001) sendo observados os valores médios de 0,616, 0,004, 0,0703 e 0,621, 0,005, 0,129 $\rm ET\mu M$ para os tempos 0 e 21 dias e tratamentos controle, 5 e 10%, respectivamente. Para analise sensorial, houve diferença significativa para todos os atributos avaliados, sendo constatados maiores escores e maior intenção de compra para o tratamento controle.

Tabela 5 – Valores médios para os atributos sensoriais do kefir com beterraba

Atributos	1	2	3
Cor	7,41 ^a	5,48 ^b	5,37 ^b
Aroma	6,23 ^a	5,43 ^b	5,26 ^b
Sabor	6,51 ^a	4,84 ^b	4,09°
Textura	7,01 ^a	5,27 ^b	4,69 ^b
Imp. Global	6,57 ^a	5,00 ^b	4,46 ^b
Int. de Compra	3,55 ^a	2,40 ^b	2,11 ^b

Tratamentos: níveis de adição de beterraba 0% (1), 5% (2), 10% (3). Médias seguidas com letras iguais na mesma linha não diferem estatisticamente entre si a 5% de significância pelo teste de Tukey (p≤0,05).

Conclusões

A adição de 5% de polpa de beterraba propiciou maiores contagens microbiológicas, entretanto o produto apresentou baixos índices de aceitação e de intenção de compra.

Agradecimentos

Agradecimento ao CNPg pelo financiamento do projeto e a UEM pela estrutura.

Referências

APHA. American Public Health Association. **Compendium of methods for the microbiological examination of foods.** 3 °ed., 1992.

CANO-SANCHO, G. et al. Comparison of thenutritional composition and the concentrations of various contaminants in branded and privatelabel yogurts. Journal of FoodComposition and Analysis, [S. I.], v. 42, p.71–77, 2015.

FAO. FAOSTAT. **Producti on live animals**. Disponível em: < http://www.fao.org/faostat/en/#data/QA>. Acesso em: 18/05/2019.

INSTITUTO ADOLFO LUTZ. **Métodos Físico-químicos para Análise de Alimentos**. 4 ed. São Paulo: Instituto Adolfo Lutz, 2008.

MENDES, C.G.; SILVA, J.B.A.; ABRANTES, M.R. Caracterização organoléptica, físico-química, e microbiológica do leite de cabra: uma revisão. ActaVeterináriaBrasílica, Mossoró, v.3, n.1, p.5-12, 2009.

