CARACTERIZAÇÃO MECÂNICA DE VITROCERÂMICAS CONTENDO CRISTAIS DE DISSILICATO DE LÍTIO (Li₂Si₂O₅) E METASSILICATO DE LÍTIO (Li₂SiO₃)

Gabriel dos Santos Oliveira (PIBIC/CNPq/FA/UEM), Viviane Oliveira Soares (Orientadora), e-mail: g.s.oliveira00@gmail.com

Universidade Estadual de Maringá / Centro de Ciências Exatas – Departamento de Ciências /Goioerê - PR

Ciências Exatas e da Terra, Física.

Palavras-chave: Vitrocerâmica, Cristalização, Propriedades Mecânicas

Resumo:

Neste trabalho demos continuidade ao projeto anterior de iniciação científica, no qual foram obtidas vitrocerâmicas (VCs) contendo cristais de dissilicato de lítio (Li₂Si₂O₅) e/ou metassilicato de lítio (Li₂SiO₃). Sendo assim, apresentamos dados da caracterização mecânica dessas VCs e outras composições elaboradas. VCs de elevada transparência, alta dureza e elevado módulo elástico foram obtidas. Verificamos que o aumento de 4 % em mol de SiO₂ na composição do vidro inicial viabilizou o aumento da resistência mecânica da vitrocerâmica.

Introdução

Vitrocêramicas (VCs) são materiais inorgânicos, não metálicos, preparados pela cristalização controlada de vidros (BEALL, 1992; MONTAZERIAN e ZANOTTO, 2017). Eles contêm pelo menos um tipo de fase cristalina funcional e um vidro residual. A fração cristalizada pode variar de ppm a quase 100%. As VCs se tornaram populares na odontologia por causa de sua biocompatibilidade, inércia química, alta resistência à fratura e tenacidade, estabilidade de cor, translucidez e usinabilidade (MONTAZERIAN e ZANOTTO, 2017; DAVIS e ZANOTTO, 2017). VCs odontológicas se destacam devido a possibilidade de combinação de diferentes propriedades mecânicas e ópticas (HÖLAND et al., 2007).

Deste modo, a caracterização mecânica e ópticas das VCs desenvolvidas neste trabalho torna-se imprescindível para avaliarmos sua possível aplicação como prótese odontológica ou outra possível aplicação.

Materiais e métodos

As amostras vítreas foram confeccionadas no Laboratório de Materiais Vítreos (LaMav) da Universidade de São Carlos (UFSCar) com o intuito de apresentarem fases cristalinas metassilicato de Lítio (Li₂SiO₃) e/ou dissilicato

de Lítio ($\text{Li}_2\text{Si}_2\text{O}_5$). Os vidros foram fundidos a 1450°C por 4 horas, vertidos em um molde de aço cilíndrico com 12 mm de diâmetro, as amostras foram tratadas termicamente para alivio de tensões e cortadas em discos com aproximadamente 2mm de espessura e submetidas a distintos tratamentos térmicos em um forno elétrico tubular. Cada composição elaborada foi submetida a análises de DSC (*Differential Scanning Calorimetry*) usando um equipamento NETZSCH – célula DSC 404 e controlador TASC 414/3, com taxa de aquecimento de 10°C/min até 1200°C, a fim de estimar as temperaturas características do vidro.

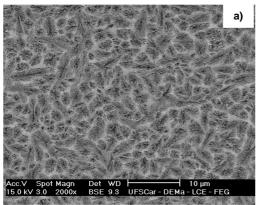
As amostras vitrocerâmicas foram desbastadas em lixas de carbeto de silício (SiC) de diferentes granulometrias e polidas em óxido de cério. As fases cristalinas presentes foram identificadas por difração de raios-X empregando-se um difratômetro (Bruker D2 Phaser) com filamento de Cu. Os difratogramas foram realizados no intervalo de 2θ de 10°-60° no modo "step continuous" com um intervalo angular de 0,02° e tempo de contagem de 1 s.

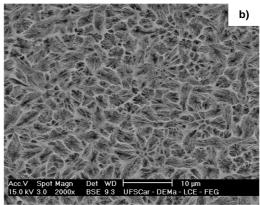
Utilizando a microscopia eletrônica de varredura (MEV) nas amostras MV6_4Si e MV6_2Zr2Si em que apresentaram fase principal Li $_2$ SiO $_3$ vislumbrando sua possível usinagem, foi utilizado o equipamento FEG-SEM Mira3 from Tescan, com detector de elétrons secundários (SE) e elétrons retroespalhados (BSE), também foi utilizado o equipamento Philips XL-30 FEG da Universidade Federal de São Carlos (UFSCar). Além disso, estas amostras foram submetidas ao teste de flexão biaxial conhecido por *ball on three balls* (B3B), empregou-se uma velocidade de carregamento de 1 \pm 0,5 mm/min. A dureza e módulo elástico de amostras obtidas em um projeto anterior, foram determinados pela técnica de indentação instrumentada, utilizando o equipamento Nanoindenter XP da MTS Systems Corporation com ponta tipo Berkovich.

Resultados e Discussão

Foram analisados sete vidros de diferentes composições, sendo apenas dois deles elaborados em um projeto anterior (Meta02 e Meta05). Deste modo, ao analisarmos as curvas de DSC obtidas, verificamos um aumento significativo na estabilidade vítrea das composições com adição de SiO₂ e ZrO₂. Além disso, a partir das curvas de DSC foram determinados os tratamentos térmicos de nucleação e crescimento de cristais para cada composição.

Após os tratamentos térmicos de cristalização as vitrocerâmicas foram caracterizadas por MEV e serão apresentados aqui apenas duas composições de maior relevância: MV6_4Si (com adição de 4 % em mol de SiO₂) e MV6_2Zr2Si (com adição de 2 % em mol de SiO₂ e 2 % em mol ZrO₂). Ambas as VCs apresentaram metassilicato de lítio como fase cristalina principal e uma microestrutura com cristais de morfologia semelhantes (esferulitos), conforme pode ser visto na Figura 1. A resistência mecânica, determinada por B3B, foi 325 ± 36 MPa para as amostras





 $MV6_4Si$ e 287 ± 21 MPa nas amostras $MV6_2Zr2Si$. Desse modo, a adição de 4 % em mol de SiO_2 nas amostras $MV6_4Si$ se apresentou promissora para o aumento da resistência mecânica em relação à adição de 2 % em mol de SiO_2 e 2 % em mol de ZrO_2 . No entanto, os valores de resistência mecânica aqui obtidos são inferiores àqueles obtidos para o material comercial IPS e.max CAD da empresa Ivoclar (KNOW et al., 2018).

Figura 1 - a) Micrografia de VC MV6_4Si tratas a 700°C para cristalização. **b)** Micrografia de VC MV6_2Zr2Si tratadas a 725°C

Com a finalidade de uma maior compreensão das propriedades mecânicas das composições desenvolvidas no projeto anterior, analisamos a dureza e modulo elástico de dois conjuntos de amostras das composições Meta02 e Meta05, conforme mostrado na Tabela 1.

Tabela 1. Dados de dureza e modulo elástico das composições Meta02 e Meta05

	Módulo elástico (H) - GPa		Dureza (E) - GPa	
	Vidro	Vitrocêramica	Vidro	Vitrocêramica
Meta02	86,64 ± 2,09	135,96 ± 6,55	6,67 ± 0,26	10,73 ± 1,31
Meta05	102,37 ± 2,57	134,05 ± 1,92	$7,86 \pm 0,48$	10,75 ± 0,28

Para as VCs Meta02 (transparentes) obtivemos um aumento considerável da dureza e do módulo elástico, em comparação ao vidro precursor. Para as VCs Meta05 obtivemos um aumento de 36,8% de dureza (10,75 ± 0,28 GPa) e 31% de módulo elástico (134,05 ± 2 GPa) em comparação ao vidro, conforme pode ser visto na Tabela 1. Nesse sentido, as amostras VCs (Meta02 e Meta05) apresentaram elevada dureza, sendo superiores em relação aos dentes naturais (dureza aproximada de 6-7GPa) e outras VCs comerciais apresentados na literatura. (MONTAZERIAN e ZANOTTO, 2017; KNOW et al., 2018).

Conclusões

Todas as vitrocerâmicas elaboradas apresentaram as fases cristalinas desejadas (Li_2SiO_3 e/ou $\text{Li}_2\text{Si}_2\text{O}_5$), as composições vítreas modificadas com SiO_2 e/ou ZrO_2 apresentaram uma maior estabilidade vítrea. A adição de 4% em mol de sílica na composição do vidro inicial foi efetiva para o aumento da resistência mecânica das vitrocerâmicas obtidas. As vitrocerâmicas Meta02 e Meta05 apresentaram valores de dureza superiores à dureza do dente natural e também elevados valores de módulo elástico.

Agradecimentos

Agradecemos ao CNPq, Fundação Araucária, UEM, Laboratório de Materiais Vítreos (LaMaV) da Universidade Federal de São Carlos (UFSCar) e a todos que colaboraram para a realização desta pesquisa.

Referências

- [1] BEALL, G. H. Design and properties of glass-ceramics. **Annual Review of Materials Science**, v. 22, n. 1, p. 91-119, 1992.
- [2] MONTAZERIAN, M.; ZANOTTO, E. D. Bioactive and inert dental glass-ceramics. **Journal of Biomedical Materials Research Part A**, v. 105, n. 2, p. 619-639, 2017.
- [3] DAVIS, M. J.; ZANOTTO, E. D. Glass-ceramics and realization of the unobtainable: Property combinations that push the envelope. **MRS Bulletin**, v. 42, n. 3, p. 195-199, 2017.
- [4] HÖLAND, W. et al. Principles and phenomena of bioengineering with glass-ceramics for dental restoration. **Journal of the European Ceramic Society**, v. 27, n. 2-3, p. 1521-1526, 2007.
- [5] KWON, S. J. et al. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. **The Journal of Prosthetic Dentistry**, v. 120, n. 1, p. 132-137, 2018.

