Introdução às Equações Diferenciais Ordinárias Impulsivas

Arissa M. Ghuidotti (PIBIC/CNPq/FA/Uem), Valéria N. D. Cavalcanti (Orientadora), Luciene G. P. Arantes (Coorientadora), e-mail: ra101366@uem.br.

Universidade Estadual de Maringá / Centro de Ciências Exatas / Maringá, PR.

Matemática, Análise.

Palavras-chave: Equações Diferenciais, Impulso, Modelo de Kruger-Thiemer.

Resumo:

Estudamos as Equações Diferenciais Ordinárias (EDO's) Impulsivas em tempos pré-fixados, tempos esses conhecidos de antemão. Estabelecemos Teoremas de Existência e Unicidade para as EDO's Impulsivas e analisamos alguns problemas modelados por essas equações.

Introdução

Equações com impulsos são apropriadas para descrever processos de evolução que sofrem variação de estado de tão curta duração que podem ser consideradas instantâneas. Este fenômeno é chamado impulsivo ou ação impulsiva e corresponde às descontinuidades de primeira ordem das soluções ou de suas derivadas.

Materiais e métodos

Utilizamos a referência [1] como principal fonte bibliográfica no estudo das Equações Diferenciais Ordinárias Impulsivas, e as demais referências como apoio. O projeto foi desenvolvido com estudos individuais por parte da aluna e com apresentação de seminários semanais para a orientadora e coorientadora, de modo a expor os resultados obtidos e sanar as possíveis dúvidas.

Resultados e Discussão

As equações diferenciais ordinárias impulsivas são um tipo específico de equações ordinárias e, portanto, torna-se necessário relembrar os conceitos básicos dessa teoria. Para mais detalhes ver referências [1], [2],[3] e [4].

<u>Definição</u>: Uma equação que contém derivadas ou diferenciais de uma ou mais variáveis dependentes com relação a uma ou mais variáveis independentes é chamada *Equação Diferencial*. Se a equação contém somente derivadas ordinárias de uma ou mais variáveis dependentes, com relação apenas a uma única variável independente é chamada de *Equação Diferencial Ordinária* (EDO).

<u>Definição</u>: Sejam $D \subset R^{n+1} = R \times R^n$ um aberto e $f:D \subset R^{n+1} \to R^n$ uma função contínua. Uma solução da Equação Diferencial Ordinária x'(t) = f(t, x(t)) em um intervalo $I \subset R$ é uma função $x:I \to R^n$ tal que

- 1. $(t, x(t)) \in D$, $\forall t \in I$;
- 2. x é diferenciável em I;
- 3. $x'(t) = f(t, x(t)), \forall t \in I$.

<u>Definição</u>: Seja $(t_0, x_0.) \in D$. Um *Problema de Valor Inicial* (PVI), para a equação x' = f(t, x), consiste em encontrar um intervalo I e uma solução x em I tal que $t_0 \in I$ e $x(t_0) = x_0$.

Introduziremos, agora, o conceito de equações impulsivas. Iniciaremos com a definição de sistemas impulsivos. Para representar um sistema impulsivo, consideramos

- 1. Uma equação diferencial x'=f(t,x), onde $f\colon R_+\times\Omega\to R^n$ é uma função que satisfaz algumas condições de modo a obtermos a existência e unicidade para o PVI, Ω é um aberto de R^n e R_+ é o conjunto dos números reais positivos;
- 2. Os conjuntos M(t), $N(t) \subset \Omega$, $t \in R_+$;
- 3. O operador $A(t): M(t) \rightarrow N(t), t \in R_+$.

Logo, o sistema impulsivo é dado por:

$$\begin{cases} x' = f(t, x) \\ x(t) \in M(t) \Rightarrow x(t^+) = A(t)x(t). \end{cases}$$

A curva descrita por P_t é chamada *curva integral* e a função que define essa curva é a solução do sistema acima.

A solução de um sistema diferencial impulsivo pode ser:

- a) Uma função contínua, se a curva integral $\{(t, x); t \ge t_0, x = x(t_0)\}$ não encontrar o conjunto M(t) ou se atingir M(t) em pontos fixos do operador A(t):
- b) Uma função contínua por partes, com um número finito de descontinuidades de primeira espécie, se a curva encontrar M(t) em um número finito de pontos que não são pontos fixos do operador A(t):
- c) Uma função contínua com uma quantidade enumerável de descontinuidades de primeira espécie, se a curva encontra M(t) em

uma quantidade enumerável de pontos que não são pontos fixos de A(t);

<u>Definição</u>: Os instantes $t=t_k$ nos quais as curvas integrais de um sistema impulsivo atingem o conjunto M(t) são denominados *momentos de impulso* do sistema.

Os sistemas impulsivos podem ter os impulsos em tempos pré-fixados, ou seja, os momentos de impulsos são conhecidos. Seja o conjunto M(t) representando uma sequência de planos $t=t_k$ onde $\{t_k\}$ é uma sequência de tempos tal que $t_k\to\infty$ quando $k\to\infty$. Seja $\Omega\subset R^n$ um aberto, definimos o operador A(t) para $t=t_k$ somente quando a sequência de operadores A(k), A(k)=A(t): $\Omega\to\Omega$, é definido por $A(t)x=x+I_k(x)$, onde I_k : $\Omega\to\Omega$. O conjunto N(t) é também definido para $t=t_k$ e dado por N(k)=A(k)M(k).

Com esta escolha de M(k), N(k) e A(k), um modelo matemático de um simples sistema diferencial impulsivo com tempo fixado pode ser representado por

$$\begin{cases} x'(t) = f\bigl(t,x(t)\bigr), & t \neq t_k, \ k = 1,2, \dots \\ \Delta x(t) = I_k(x), & t = t_k, \end{cases}$$

onde para $t = t_k$ temos $\Delta x(t_k) = x(t_k^+) - x(t_k)$ e $x(t_k^+) = \lim_{t \to t_k^+} x(t_k)$.

Quando o tempo é variável, o sistema se torna

$$\begin{cases} x'(t) = f(t, x(t)), & t \neq \tau_k(x), k = 1, 2, \dots \\ \Delta x(t) = I_k(x), & t = \tau_k(x), \end{cases}$$

onde τ_k é uma função contínua, $\tau_k(x) < \tau_{k+1}(x)$ e $\tau_k(x) \to \infty$, $x \in \Omega$.

Estudamos condições para que os sistemas impulsivos acima possuam solução local, global e quando a solução existente é única.

Aplicação.

Consideremos a seguinte situação descrita por um sistema impulsivo. O modelo que apresentaremos, modelo de Kruger-Thiemer, descreve a aplicação de distribuição de drogas no corpo humano. Suponha que a droga, administrada oralmente, é primeiro dissolvida no ambiente gastrointestinal. A droga é então absorvida em um ambiente amorfo constituído de sangue, músculos, tecido, etc., chamado de volume aparente de distribuição, e é finalmente eliminada do sistema pelos rins. Suponha que x(t) e y(t) são as quantidades de droga no instante t no ambiente gastrointestinal e no volume

aparente de distribuição, respectivamente, e sejam k_1 e k_2 taxas constantes. As equações que representam esse processo são:

$$\begin{cases} x' = -k_1 x \\ y' = -k_2 y + k_1 x. \end{cases}$$

O tratamento é feito de tal forma que nos instantes $0 < t_1 < t_2 < \cdots < t_N < T$ a droga é prescrita em quantidades $\delta_0, \delta_1, \delta_2, \dots, \delta_N$, respectivamente. Desse modo, tem-se as seguintes condições acrescidas ao sistema acima:

$$\begin{cases} x(t_i^+) = x(t_i^-) + \delta_i \\ y(t_i^+) = y(t_i^-), & i = 1, 2, ..., N \\ x(0) = \delta_0, & y(0) = 0. \end{cases}$$

Para se obter o efeito terapêutico esperado, é preciso que a quantidade de droga no volume aparente de distribuição nunca fique abaixo de um nível mínimo durante o tempo de tratamento. No Modelo de Kruger-Thiemer os instantes de impulso são pré-fixados.

Conclusões

As equações diferenciais ordinárias possuem um ramo de muito interesse e aplicabilidade, as equações diferenciais impulsivas. Além de ser rica do ponto de vista matemático, a teoria das equações impulsivas traduzem muitos problemas reais, por exemplo, na área de saúde.

Agradecimentos

Agradeço as professoras, Valéria e Luciene, por compartilhar seus conhecimentos tão carinhosamente e agradeço também ao CNPq pelo auxílio financeiro por meio do Programa Institucional de Bolsas de Iniciação Científica.

Referências

- 1. V. Lakshmikanthan, D. D. Bainov, P. S. Simeonov, *Theory of impulsive differential equations*, Modern Applied Math., 6, World Scientific, 1989.
- 2. D. Bainov, P. S. Simeonov, *Impulsive differential equations: periodic solutions and apllications*, Longman Scientific and Technical, 1993.
- 3. J. Sotomayor, Lições de equações diferenciais ordinárias, IMPA, 1979.
- 4. N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko e N. Skripnik, *Differential equations with impulse effects*, De Gruyter studies in Mathematics 40, 2011.

29º Encontro Anual de Iniciação Científica 9º Encontro Anual de Iniciação Científica Júnior

