SIMULAÇÕES COMPUTACIONAIS EM MATERIAIS MULTIFERRÓICOS

José Guilherme Breder Vedovelli (PIBIC/CNPq/FA/UEM), Anuar José Mincache, Luiz Fernando Cotica (Orientador), e-mail: lfcotica@uem.br

Universidade Estadual de Maringá / Departamento de Física/ Centro de Ciências Exatas/Maringá, PR.

1.05.07.00-0 Física da Matéria Condensada

Palavras-chave: BiFeO₃, aprendizado de máquina, *k-Nearest Neighbor*

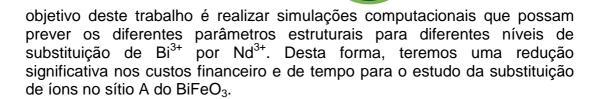
Resumo:

Neste trabalho são realizadas simulações e predições de parâmetros de rede do sistema Bi_{1-x}Nd_xFeO₃. Para isso é utilizado o modelo de regressão do tipo k-NN (*k-Nearest Neighbor*) implementado via linguagem de programação *Python*.

Introdução

O fenômeno do multiferroísmo se dá pela junção de fenômenos elétricos, magnéticos e/ou deformação mecânica do material. Assim percebemos a possibilidade de uma variedade de ordenamentos ferróicos distintos. Entre os estados possíveis, podemos ter os acoplamentos magnetoelétrico, piezoelétrico e magnetoestritivo presentes em um intervalo de temperatura. Compostos como BiFeO₃ apresentam propriedades de multiferroicidade em temperatura ambiente, pois a temperatura de transição magnética está em torno de 650 K e a temperatura de transição elétrica está na ordem de 1100 K. Estas temperaturas fazem deste composto um excelente candidato para desenvolver aplicações tecnológicas. Porém, o composto BiFeO₃ possui alguns problemas que podem impedir seu uso, como por exemplo a alta condutividade intrínseca e, portanto, as altas perdas dielétricas e a tendência à fadiga. A substituição de íons nos sítios A ou B do BiFeO₃ é uma das maneiras de reduzir (ou resolver) estes problemas.

Em temperatura ambiente o composto BiFeO₃ possui uma estrutura romboédrica com grupo espacial de simetria R3c, apresentam os parâmetros de rede sendo a=b=5.587 Å, c=13.867 Å, $\alpha=\beta=90^{\circ}$ e $\gamma=120^{\circ}$ na configuração hexagonal [1]. É possível representar o BiFeO₃ com uma estrutura triclínica com grupo espacial P1 e parâmetros de rede a=5,631 Å, b=5,638 Å, c=5,637 Å, $\alpha=59,33^{\circ}$, $\beta=59,35^{\circ}$ e $\gamma=59,38^{\circ}$ [2]. Neste trabalho trabalhamos com a substituição de parte dos íons Bi³⁺ por Nd³⁺. Como estes íons possuem raios iônicos diferentes, com esta substituição é esperado uma variação nos parâmetros de rede do composto.


A síntese de vários compostos, com diferentes níveis de substituição de Bi³⁺ por Nd³⁺, é um processo com alto custo financeiro e de tempo. Portanto, o

Materiais e métodos

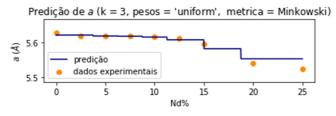
Em nosso trabalho utilizamos como dados iniciais parâmetros de rede obtidos experimentalmente para o sistema Bi_{1-x}Nd_xFeO₃. Para a realização das simulações computacionais foi utilizada a linguagem *Python*. Esta é uma linguagem de programação com o proposito inicial de facilitar o acesso, uso e implementação da programação em qualquer área e de código aberto, o que permite que possa ser alterada e melhorada constantemente. Uma grande vantagem do uso de *Python* é o de sua vasta quantidade e variedade de bibliotecas, nas quais pode haver desde operações básicas e cientificas até aprendizado de máquina e inteligência artificial.

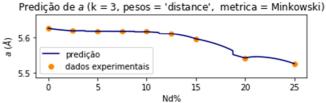
Para as simulações utilizamos a biblioteca *Scikit-learn*, que é a mais útil e robusta para aprendizado de máquina em *Python*. Ela fornece uma seleção de ferramentas eficientes para aprendizado de máquina e modelagem estatística, incluindo classificação, regressão, agrupamento e redução de dimensionalidade por meio de uma interface de consistência em *Python*. Como modelo estatístico foi utilizada a regressão do tipo k-NN (*k-Nearest Neighbor*) [3], um dos algoritmos de aprendizado de máquina mais simples, não paramétrico e de aprendizado lento por natureza. Não paramétrico significa que não há suposição para a distribuição de dados subjacente, ou seja, a estrutura do modelo é determinada a partir do conjunto de dados. Aprendizado lento ou baseado em instância significa que, para fins de geração de modelo, não requer nenhum ponto de dados de treinamento e todos os dados de treinamento são usados na fase de teste.

Resultados e Discussão

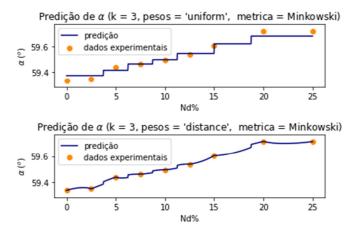
Na tabela 1 são apresentados os dados experimentais utilizados como dados de treinamento na fase de teste. Estes dados foram obtidos através de experimentos de difração de raios X em amostras do sistema Bi_{1-x}Nd_xFeO₃ realizados no laboratório do Grupo de Desenvolvimento de Dispositivos Multifuncionais da UEM.

Para as simulações foram considerados diferentes números de vizinhos próximos (k). Para o nosso conjunto de dados de teste, obtivemos melhores resultados com k = 3. O algoritmo para o cálculo das distâncias entre todos os pares de pontos no conjunto de dados foi baseado na "força bruta". Após esta escolhas, o próximo passo é calcular a distância entre o novo ponto e cada ponto de treinamento. Existem vários métodos para calcular esta distância, dos quais os métodos mais comumente conhecidos são o Euclidiano, o Manhattan e o Minkowski. Para o nosso trabalho o método de Minkowski se mostrou mais adequado.





Além disso, foram testados os métodos de peso uniforme (*uniform*) para todos os pontos utilizados nos cálculos das distâncias (*distance*) e de peso proporcional à distância – quanto menor a distância maior o peso no cálculo. Exemplos dos resultados obtidos são apresentados nas figuras 1 e 2.


Tabela 1 – Dados experimentais (parâmetros de rede) utilizados como dados de treinamento na fase de teste, do sistema $Bi_{1-x}Nd_xFeO_3$

x (%)	а	b	С	α (°)	β (°)	γ (°)
0,0	5.626	5.632	5.631	59.33	59.39	59.36
2,5	5.618	5.628	5.624	59.34	59.49	59.35
5,0	5.617	5.627	5.617	59.43	59.54	59.35
7,5	5.618	5.625	5.616	59.46	59.55	59.36
10,0	5.616	5.624	5.611	59.49	59.59	59.39
12,5	5.610	5.620	5.606	59.53	59.61	59.44
15,0	5.595	5.611	5.595	59.60	59.73	59.45
20,0	5.541	5.598	5.568	59.71	60.37	59.82
25,0	5.525	5.607	5.582	59.71	60.02	59.67

Figura 1 – Simulações do parâmetro de rede *a* utilizando um modelo estatístico de regressão do tipo k-NN.

Figura 2 – Simulações do parâmetro de rede α utilizando um modelo estatístico de

29 a 31 de outubro de 2020

regressão do tipo k-NN.

Conclusões

Neste trabalho estudamos o funcionamento do algoritmo k-NN e sua implementação em *Python*. É uma das técnicas de aprendizado de máquina mais utilizadas para classificações e regressões. Entretanto, é uma técnica pouco utilizada para simulações e predições de propriedades de materiais, principalmente os multiferróicos. Assim, foram obtidas predições para os parâmetros de rede no sistema Bi_{1-x}Nd_xFeO₃.

Agradecimentos

Os autores agradecem ao CNPq pela bolsa, à UEM pela disponibilização dos espaços e equipamentos para pesquisa e ao GDDM pelos dados experimentais utilizados neste trabalho.

Referências

- [1] MOREAU J., MICHEL C., GERSON R., JAMES W. Ferroelectric BiFeO₃ X-ray and neutron diffraction study. **Journal of Physics and Chemistry of Solids**, v. 32, p. 1315-1320, 1971.
- [2] WANG H. *et al.* On the Structure of α -BiFeO₃. **Inorganic Chemistry**, v. 52, n. 5, p. 2388-2392, 2013.
- [3] SONG Y., LIANG J., LU J., ZHAO X. An efficient instance selection algorithm for *k* nearest neighbor regression. **Neurocomputing**, v. 251, p. 26-3416, 2017.

