

Síntese, caracterização e avaliação do potencial fotocatalítico de nanopartículas de hidroxiapatita dopada com íons zinco

Carlos Eduardo Scanferla (PIBIC/CNPq/FA/UEM), Angélica Gonçalves Oliveira (PG/UEM), Daniela Martins Fernandes de Oliveira (Orientador) e-mail: carlos.scanferla27@gmail.com

Universidade Estadual de Maringá / Centro de Ciências Exatas/Maringá, PR.

Ciências Exatas e da Terra, Química

Palavras-chave: Hidroxiapatita, óxido de zinco, fotocatálise

Resumo

Neste trabalho foram sintetizadas nanopartículas de hidroxiapatita (HAp) contendo diferentes teores molares de íons Zn^{2+} (HAp-Zn x%, sendo x = 0; 1,0; 3,0 e 5,0% em mol de Zn²⁺). Estes materias foram caracterizados por difração de raios-X (DRX), microscopia eletrônica de varredura (MEV), espectroscopia de absorção na região do infravermelho (FTIR), espectroscopia de absorção fotoacústica na região do UV-vísivel (PAS/UVvis), espectroscopia Raman e espectroscopia de fotoluminescência (FL). Os difratogramas de DRX apresentaram intensos picos de difração característicos da HAp, onde ligeiros deslocamentos dos picos podem ser atribuidos a inserção Zn²⁺ na estrutura da HAp, bem como, picos caracteríticos do ZnO para as amostras contendo teores de Zn²⁺. Os espectros Raman exibiram, para todas as amostras, sinais característicos de grupos PO_4^{3-} da HAp, além de sinais para as amostras com 1,0%, 3,0% e 5,0% de íons zinco, referentes vibração E₂ (alto) do ZnO. As amostras de HAp-Zn apresentaram dois valores de E_a, um característico da HAp e outro característico do ZnO. As amostras HAp-Zn 1,0; 3,0 e 5,0% exibiram valores de E_a de 2,23; 2,40 e 2,34 eV, respectivamente, característicos da HAp, e as mesmas amostras exibiram Eg de 3,16; 3,47 e 3,36 eV, característico do ZnO. Enquanto a E_g estimada para a HAp pura, foi de 3,92 eV. Além disso, o aumento do teor de Zn²⁺ nas amostras proporcionou deslocamentos das bandas de emissão fotoluminescente. A amostra de HAp-Zn 5,0% degradou cerca de 64% do corante Azul de Metileno (MB) em pH 10,0.

Introdução

Com o crescente desenvolvimento industrial e aumento populacional, a escassez de água tem crescido cada vez mais, e, estimativas indicam que mais de 50% dos países do mundo sofrerão com a falta de água em 2025 (THAVASI, 2008). Diante da iminente escassez de água, a contaminação de águas naturais por efluentes residuais, tem se tornado um grave problema de preocupação mundial. Dentre inúmeros contaminantes ambientais, o descarte inadequado de efluentes de indústrias têxteis pode provocar graves impactos ambientais devido à sua complexa composição, podendo conter graxas, detergentes, diferentes tipos de corantes, dentre outras substâncias.

ମ୍ଭି CNPa

30° Encontro Anual de Iniciação Científica ° Encontro Anual de Iniciação Científica Júnior

A presença de corantes orgânicos tóxicos em águas residuais oferece um grande risco para o meio ambiente quando descartados sem tratamento adequado. Quando estes poluentes entram em contato com a água, se tornam mais estáveis e com isso são mais difíceis de serem degradados, devido às suas complexas estruturas químicas. Neste cenário, inúmeras pesquisas têm sido desenvolvidas de modo a buscar novas técnicas e novos materiais para aplicação na remediação de águas residuais de indústrias têxteis. Dentre estes inúmeros estudos, destaca-se o desenvolvimento de nanomateriais semicondutores com boas propriedades fotocatalíticas. Tais semicondutores quando aliados ao processo de fotocatálise heterogênea podem exibir excelentes habilidades em degradar poluentes orgânicos e inorgânicos, na presenca de luz ultravioleta e/ou visível. Neste contexto, devido à sua elevada biocompatibilidade, a HAp sintética tem emergido como um material interessante para aplicações ambientais, para uso específico na descontaminação de águas residuais como fotocatalisador e/ou como bioadsorvente. No entanto. apesar das interessantes propriedades da hidroxiita, há relatos de que a HAp monofásica exibe E_{α} superior a 6 eV, sendo considerada, portanto, um material isolante. Por sua vez, a presença de defeitos estruturais e/ou impurezas, pode alterar os níveis eletrônicos da HAp, além de modificar suas características de superfície, diminuindo sua E_a e levando o material a se comportar como um disso, a combinação de semicondutor. Além HAp com outros semicondutores, como o ZnO, por exemplo, pode melhorar seu desempenho fotocatalítico. Dessa forma, o presente estudo buscou sintetizar nanopartículas de HAp contendo diferentes teores de íons Zn²⁺ (HAp-Zn x%, sendo x = 0; 1,0; 3,0 e 5,0% em mol de Zn^{2+}), investigar suas características estruturais, morfológicas e ópticas, bem como, avaliar seu potencial fotocatalítico na descontaminação de efluentes sintéticos contendo o corante modelo azul de metileno (MB), visando sua aplicação no tratamento de efluentes industriais têxteis.

Materiais e métodos

Reagentes

Nitrato de zinco hexahidratado (Zn(NO₃)₂ . 6 H₂O, Synth), Nitrato de Cálcio (Ca(NO₃)₂ . 4 H₂O, Synth), Ácido etilenodiamino tetra-acético (EDTA, C₁₀H₁₆N₂O₈, Synth), Ácido Fosfórico (H₃PO₄, Nuclear), hidróxido de sódio (NaOH, Nuclear), corante Azul de Metileno (MB, C₁₆H₁₈N₃SCI, Synth).

Procedimento Experimental

Nanopartículas de HAp contendo diferentes teores de Zn²⁺ (0; 1,0; 3,0 e 5,0% em mol) foram sintetizadas a partir de um método de precipitação e posterior calcinação em atmosfera de ar à 600 °C por 4 h. Os respectivos materiais obtidos foram caracterizados por DRX, FTIR, Raman, MEV, PAS/UV-vis e FL. A atividade fotocatalítica das nanopartículas de HAp-Zn% foi investigada para a descontaminação de efluentes sintéticos contendo o o corante MB sob irradiação com luz UV-visível, usando uma lâmpada de vapor de Hg. Para tais experimentos, partiu-se de 200 mL de uma solução aquosa de MB (4,0 mg L⁻¹), e a concentração de material utilizado foi de 1,0

30º Encontro Anual de Iniciação Científica)º Encontro Anual de Iniciação Científica Júnior 30°EAIC 10°EAIC 2021

mg L⁻¹. Inicialmente esta solução foi mantida no escuro sob agitação por cerca de 1 h. Posteriormente, retirou-se uma alíquota de 2,0 mL, a qual foi centrifugada e em seguida a banda de máxima absorção do corante MB (λ = 665 nm) foi analisada por espectroscopia de absorção na região do UV-vis.

Resultados e Discussão

Os difratogramas de raios-X das amostras sintetizadas exibiram picos de difração em torno de 20 = 25,86°; 31,88°; 32,22°; 33,06°; 34,12°; 46,9° e 49,46°, os quais podem ser atribuídos a HAp cristalina de acordo com o cartão JCPDS 01-086-1199 (TANJI, et al., 2020; SANS, et al., 2021). Observa-se também nas amostras de HAp contendo íons Zn²⁺, picos de difração em 20 = 32,28°; 36,30° e 56,70°, característicos do ZnO (TANJI, et al., 2020). Além disso deslocamentos observados nos picos referentes a HAp podem ser atribuídos a inserção de íons Zn²⁺ na rede cristalina da HAp. Nos espectros de FTIR foi possível observar em todas as amostras bandas de absorção características de grupos fosfato, que podem ser indexados a HAp. Nas amostras de HAp-Zn 1,0; 3,0 e 5,0% é possível observar também bandas de absorção características do estiramento de metal-oxigênio (Zn-O). Nos espectros Raman de todas as amostras foram observados sinais característicos de grupos fosfato (PO₄²⁻) da HAp. Sinais em 431 e 592 cm⁻¹ foram observados também para as amostras contendo 1,0%, 3,0% e 5,0% de íons zinco, e estes podem ser atribuídos à modos de vibração E₂ (alto) do ZnO. A partir dos espectros de absorção fotoacústica na região do UV-vis e utilizando a equação de Tauc (JESSADALUK, 2021) foi possível estimar para as amostras de HAp-Zn dois valores de E_a, um característico da HAp e outro característico do ZnO, como pode ser observado na Figura 1(a). Sendo assim, para as amostras HAp-Zn 1,0; 3,0 e 5,0%, observou-se valores de E_a de 2,23 eV, 2,40 eV e 2,34 eV, respectivamente, característicos da HAp, e E_q de 3,16 eV, 3,47 eV e 3,36 eV, característicos do ZnO. também Interessantemente, os valores de E_a característicos da HAp e estimados para as amostras de HAp-Zn são menores do que a E_a estimada para a HAp pura, de 3,92 eV. A partir dos espectros de FL foi possível notar que a HAp pura apresentou uma banda de emissão centrada em 400 nm, enquanto que as amostras de HAp-Zn 1,0%; 3,0% e 5,0% exibiram bandas de emissão intensas e deslocadas em relação a HAp pura, entre 488 nm e 585 nm. Com relação aos ensaios de fotocatálise, a triagem de parâmetros como massa de fotocalisador (100, 150 e 200 mg) e pH (7,0 e 10,0) foram avaliados. As melhores condições observadas foram com 200 mg de fotocatalisador e pH 10,0. Em pH 7,0 as nanopartículas de HAp-Zn% não exibiram atividade fotocatalítica, devido provavelmente a repulsão entre as cargas na superfície do corante e as cargas na superfície dos nanomateriais. No entanto, em pH 10,0 a HAp pura apresentou taxa de degradação de 20% em 240 min de irradiação, enquanto as amostras contendo 1,0; 3,0 e 5,0% de Zn apresentaram taxas de degradação maiores, de 61, 41 e 64%, respectivamente.

@CNPa

AR ALICARIA

Fig. 1 – (a) Relação entre $(\alpha hv)^2$ versus hv (eV) para obtenção das energias de gap (E_g) das nanopartículas de HAp-Zn x% (0%, 1,0%, 3,0% e 5,0%) e (b) Fotodegradação (%) do corante MB (pH = 10,0) em função do tempo de irradiação com luz UV-visível, utilizando como fotocatalisadores as nanopartículas de HAp-Zn x%.

Conclusões

Foi possível sintetizar nanopartículas HAp contendo diferentes teores de íons Zn^{2+} (HAp-Zn x%, sendo x = 0; 1,0; 3,0 e 5,0 % em mol). Picos de difração característicos de HAp e ZnO foram detectados nos difratogramas de raios-X. O preparo das nanopartículas de HAp-Zn% possibilitou a moldagem das propriedades ópticas e consequente melhora na eficiência fotocatalítica das NPs de HAp. As nanopartículas de HAp-Zn x% não demonstraram atividade fotocatalítica para a degradação do corante MB em pH 7,0 e sob irradiação UV-vis. No entanto, em pH 10,0 a amostra HAp-Zn 5,0% degradou cerca de 64% do corante MB após 240 min de irradiação UV-vis.

Agradecimentos

Ao DQI-UEM, ao Complexo de Centrais de Apoio à Pesquisa (COMCAP), ao CNPq pelo apoio financeiro e ao grupo de pesquisa GPBN.

Referências

THAVASI, V. SINGH, G. RAMAKRISHNA, S. Electrospun nanofibers in energy and environmental applications. **Energy Environmental Science**, v. 1, p. 205-221, 2008.

JESSADALUK, S., et al. Electroreflectance study of antimony doped ZnO thin films grown by pulsed laser deposition. **Optical Materials**, v. 120, p. 111461, 2021.

TANJI, K., et al. Fast photodegradation of rhodamine B and caffeine using ZnO-hydroxyapatite composites under UV-light illumination. **Catalysis Today**, 2020.

SANS, J., et al. Optimization of permanently polarized hydroxyapatite catalyst. Implications for the electrophotosynthesis of amino acids by nitrogen and carbon fixation. **Journal of Catalysis**, v. 397, p. 98-107, 2021.

@CNPa

UEN Estadual de Maringá FUNDACAC ΛRΛUCΛRIΛ PARANÁ