COMPOSIÇÃO EM ÁCIDOS GRAXOS E TEXTURA DE BOLO ELABORADO COM ORGANOGEL A BASE ÓLEO DE CANOLA.

Catharina Paula Buranello (PIBIC/FA/UEM), Oscar Oliveira Santos (Orientador), Bruno Henrique Figueiredo Saqueti (Coorientador), Izabelle Cremaschi Kasukawa Martins (UEM).

E-mail: oosjunior@uem.br

Universidade Estadual de Maringá, Centro de Ciências Exatas e da Terra, Maringá, PR.

Ciências Exatas e da Terra, Química /Química Analítica.

Palavras-chave: Bolo; organogel; ômega 3.

RESUMO

O uso de gordura vegetal em bolos industrializados faz com que este alimento apresente um alto teor de ácidos graxos saturados, o que pode acarretar diversos problemas de saúde quando consumido em excesso. Deste modo, o objetivo do trabalho é formular um bolo com substituição parcial e total da GV e avaliar o teor de ácidos graxos e textura dessas formulações. Tanto a substituição parcial quanto a total apresentaram uma redução de gorduras saturadas e o aumento do teor de ácidos graxos insaturados, os quais são importantes para a manutenção do corpo humano quando consumidos em dosagens adequadas, como o caso do ômega 3. Além disso, a análise de textura não demonstrou diferenças estatísticas. Concluiuse, então, que a aplicação do organogel em bolo foi satisfatória em relação a qualidade dos ácidos graxos e a textura deste alimento.

INTRODUÇÃO

A escolha por bolos industrializados deve-se à praticidade, disponibilidade de mercado e diversidade de sabores. Esses bolos são feitos com o uso da gordura vegetal (GV), pois é uma gordura sólida barata e que possui sabor neutro, mas pode causar problemas de saúde como obesidade, aumento da lipoproteína de baixa densidade (LDL) e atuação em processos inflamatórios quando consumida em altas dosagens (Zambiazi, et al., 2007; Briggs, et al., 2017). Neste contexto, o organogel (OG) é proposto como substituto da GV, os organogéis são sistemas compostos por óleos vegetais e agentes estruturantes que formam uma rede tridimensional, conferindo ao material uma consistência semissólida, além disso, por ser rico em ácidos graxos insaturados (AGI), podem trazer diversos benefícios para a saúde humana em dosagens adequadas (Marçola et al., 2024).

O ácido graxo α-linolênico (ômega 3), está presente no óleo de canola e é precursor de outros ácidos graxos essenciais para o organismo, os quais atuam na saúde ocular e cerebral do ser humano tanto em sua fase fetal quanto em sua fase adulta. O ômega 3 é estritamente essencial e precisa ser ingerido através da alimentação para a manutenção do organismo humano, o qual não consegue sintetizá-lo (Visentainer, *et al.*, 2015). Deste modo, o objetivo do trabalho é formular um bolo com substituição parcial e total da GV e avaliar o teor de ácidos graxos e textura dessas formulações.

MATERIAIS E MÉTODOS

Preparo do organogel e do bolo

Para o preparo do OG foram pesados os três estruturantes (monoestearato de glicerila, monoestearato de sorbitano e cera de carnaúba) na proporção de 3% cada. O óleo de canola foi aquecido até 85°C, os estruturantes foram adicionados e a mistura foi homogeneizada sob agitação magnética. Após completa solubilização, o OG foi levado para incubadora BOD, onde ficou a 5°C por 24h e, após, 25°C por 24h. Para o bolo, foram realizadas três formulações, sendo utilizado como ingredientes base: ovo, açúcar, leite, farinha, fermento, sal, chocolate 50% e gordura sólida. Para a formulação 1 (B1) foi utilizado somente GV, na formulação 2 (B2) foi utilizado 50% em massa de GV e 50% de OG, e a formulação 3 (B3) foi realizada somente com OG. Os bolos foram assados na panificadora MultiPane (Britânia, Curitiba, Brasil) na programação 1 com a coloração média.

Textura (Dureza)

A dureza dos organogéis foram medidas por teste de força medida em compressão usando um Analisador de Textura TA-XT Plus (Stable Micro Systems, Surrey, Inglaterra). A força máxima aplicada (N) foi usada como medida de dureza das amostras de bolo.

Metilação e composição de ácidos graxos

Os ésteres metílicos de AGs foram preparados por "Metilação de Lipídios Totais", de acordo com a metodologia proposta pela International Organization for Standardization (ISO) n.º 5509, e posteriormente analisados em cromatógrafo gasoso (Thermo Scientific, Trace GC Ultra, Waltham, EUA) (Marçola *et al.*, 2024).

Análise estatística

Os dados das análises do bolo, realizados em triplicata, foram avaliados por ANOVA e teste de Tukey (p < 0.05) usando o software Assistat 7.7.

RESULTADOS E DISCUSSÃO

Composição de ácidos graxos

A quantificação dos ácidos graxos presentes nas amostras é apresentada na Tabela 1, identificando 13 ácidos graxos nas formulações.

Tabela 1. Análise de ácidos graxos das diferentes formulações de bolo.

Ácidos Graxos	B1 (%)	B2 (%)	B3 (%)
4:0 (Ácido butírico)	1,15±0,05ª	0,79±0,05°	0,92±0,01 ^b
8:0 (Ácido caprílico)	6,28±0,18ª	4,83±0,50 ^b	4,77±0,10 ^b
12:0 (Ácido láurico)	$0,43\pm0,03^{a}$	0,21±0,04 ^b	0,17±0,00 ^b
14:0 (Ácido mirístico)	1,57±0,04ª	1,04±0,06 ^b	0,77±0,01 ^b
16:0 (Ácido palmítico)	38,58±1,04 ^a	25,26±0,49 ^b	10,93±0,28°
16:1n-7 (Ácido palmitoleíco)	$0,50\pm0,00^{a}$	$0,49\pm0,00^{a}$	$0,47\pm0,03^{a}$
18:0 (Ácido esteárico)	6,09±0,24ª	$6,07\pm0,05^{a}$	5,32±0,01ª
18:1n-9 (Ácido oleico)	33,42±0,83°	41,27±0,25 ^b	49,52±0,26ª
18:1n-7 (ácido vacênico)	1,52±0,17 ^b	2,64±0,01 ^a	2,69±0,29ª
18:2n-6 (Ácido linoleico)	10,03±0,35°	13,82±0,03 ^b	17,60±0,08 ^a
18:3n-3 (Ácido alfa-linolênico)	0,25±0,03°	3,02±0,03 ^b	5,86±0,09 ^a
20:0 (Ácido araquídico)	$0,13\pm0,00^{c}$	0,44±0,01 ^b	$0,75\pm0,02^{a}$
22:0 (Ácido behênico)	$0.06\pm0.00^{\circ}$	0,14±0,01 ^b	$0,23\pm0,00^{a}$
ΣAGS	54,29±1,05ª	38,77±0,20 ^b	23,86±0,17 ^c
ΣAGMI	35,43±0,67°	44,39±0,27 ^b	52,68±0,00 ^a
Σ AGPI	10,28±0,38°	16,84±0,07 ^b	23,46±0,17 ^a

Valores expressos em média ± desvio padrão. Diferentes letras na mesma linha apresentaram diferenças significativas (p<0,05). B1: bolo utilizando apenas gordura vegetal; B2: bolo utilizando 50% de gordura vegetal e 50% de organogel; B3: bolo utilizando apenas organogel. AGS: ácido graxo saturado; AGMI: ácido graxo monoinsaturado; AGPI: ácido graxo poli-insaturado.

Os resultados obtidos nas diferentes formulações para o ácido graxo α linolênico foram: 0,24±0,03 para B1, 3,01±0,03 para B2 e 5,85±0,08 para B3, ou seja, houve um aumento percentual deste ácido graxo de 11,08% para a formulação de substituição parcial, e de 22,47% para a formulação com substituição total. Estudos associam o consumo deste AGPI a benefícios como a melhora da síndrome metabólica, diminuição do teor de LDL no sistema cardiovascular, redução da obesidade, regulação da pressão arterial e propriedades anti-inflamatórias (BRIGGS, et al., 2017).

Análise de textura

A análise de textura foi realizada com o miolo do bolo. Os resultados de dureza estão presentes na Tabela 2.

Tabela 2. Análise de dureza das diferentes formulações do bolo.

Formulações	Dureza (N)	
B1	15,59±0,73 ^a	
B2	12,63±1,17ª	
B3	12,67±2,19 ^a	

Valores expressos em média ± desvio padrão. Diferentes letras na mesma linha apresentaram diferenças significativas (p<0,05). B1: bolo utilizando apenas gordura vegetal; B2: bolo utilizando 50% de gordura vegetal e 50% de organogel; B3: bolo utilizando apenas organogel.

Os resultados variaram entre 12,63 e 15,59 N, sem apresentar diferença estatisticamente significativa (p<0,05) entre as amostras. Isso indica que a adição do OG não impactou as características de textura do bolo, demonstrando ser uma excelente alternativa para uso na indústria.

CONCLUSÕES

Neste estudo, observou-se que o uso de OG como uso alternativo da GV em bolos trouxe diversos resultados positivos para a amostra no que se diz a respeito de textura e para a saúde humana, o que foi observado tanto na substituição parcial quanto na substituição total.

AGRADECIMENTOS

Os autores agradecem à CAPES, CNPq, FAPPR. Agradecemos também ao grupo de pesquisa Analítica Aplicada a Lipídios, Esteróis e Antioxidantes APLE-A da UEM.

REFERÊNCIAS

Zambiazi, Rui Carlos *et al.* Fatty acid composition of vegetable oils and fats. **B. ceppa, curitiba**, v. 25, n. 1, p. 111-120, 2007.

Visentainer, J. V. *et al.* Canola: a química analítica do processamento aos compostos bioativos. Curitiba: **Appris**, 2015.

Briggs, Michelle A.; PETERSEN, Kristina S.; KRIS-ETHERTON, Penny M. Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk. In: **Healthcare.** MDPI, 2017. p. 29.

Marçola *et al.* Desenvolvimento de Organogéis de Óleo de Canola Utilizando Monoestearato de Sorbitano: Qual é a Influência de Diferentes Concentrações? **Rev. Virtual Quim.**, no prelo, 1-8, 2024.

