

POTENCIAL ALELOPÁTICO DOS EXTRATOS DE NIM SOBRE A GERMINAÇÃO DE SEMENTES DE PICÃO PRETO

Maria Eduarda Benedetti de Souza (PIBIC- AF/UEM), Victor Hugo Borsuk Damião, Martha Freire da Silva (Coorientadora), Érica Marusa Pergo Coelho (Orientadora). Email: empcoelho@uem.br

Universidade Estadual de Maringá, Centro de Ciências Agrárias, Umuarama, PR.

Centro de Ciências Agrárias, Agronomia

Palavras-chave: Alelopatia; extratos aguosos; planta daninha.

RESUMO

O presente trabalho teve por objetivo analisar as atividades alelopáticas da Azadirachta indica, na germinação das sementes de Bidens subalternans, como uma abordagem de controle sustentável. Para o experimento, foi utilizado diferentes métodos de extração (infusão) para cotilédone e (ultrassom) para folhas do Nim em concentrações de 25% e 50%, sendo: T1- água ultra-pura (0%); T2- infusão de cotilédone (25%); T3- ultrassom da folha (25%); T4- infusão de cotilédone (50%); e T5-ultrassom d a folha (50%), e para cada tratamento realizou-se quatro repetições. Com isso, foram analisados parâmetros de germinação final, índice de velocidade de germinação, comprimento de plântulas (hipocótilo e raiz), massa seca e massa fresca. Por fim, com as análises estatísticas realizadas, pode-se concluir que apenas as variáveis massa fresca da raiz e do hipocótilo apresentaram diferença significativa, as demais variáveis não diferiram estatisticamente entre si.

INTRODUÇÃO

O Nim (*Azadirachta indica*), tem origem na Ásia, especialmente nas regiões da Índia. Pertencente à família Meliaceae, é uma planta perene que normalmente pode atingir até 25 metros de altura (NEVES, OLIVEIRA e NOGUEIRA, 2003).

Alguns estudos mostram que o Nim possui um grande potencial alelopático devido à presença de aleloquímicos, como limonóides, terpenos, compostos fenólicos e a azadiractina (NETO, 2021). Esses metabólitos secundários, produzidos pelas plantas como mecanismos de defesa, podem não apenas promover o crescimento e desenvolvimento da mesma. mas também influenciar diretamente

desenvolvimento de outras plantas ao serem liberados no ambiente (ALBUQUERQUE, 2015).

O picão preto (*Bidens subalternans*), é uma planta herbácea que apresenta ampla distribuição, dito que sua propagação é feito através de sementes. Desse modo, desempenha um papel importante como uma das principais espécies infestantes de áreas agrícolas (ADEGAS, 2023). Com isso, surge a necessidade de estudos e alternativas de controle mais sustentáveis para combater esta invasora.

Assim, o presente trabalho teve como objetivo verificar as atividades alelopáticas do Nim (*Azadirachta indica*), sobre a germinação de sementes picão-preto (*Bidens subalternans*), como um método de controle sustentável.

MATERIAIS E MÉTODOS

As amostras de *Azadirachta indica* para os extratos aquosos, e as sementes de *Bidens subalternans*, foram coletadas na Universidade Estadual de Maringá-CAU, no município de Umuarama-PR.

No experimento foram utilizados dois diferentes extratos aquosos: extrato de cotilédones de sementes de *Azadirachta indica* obtido por meio de infusão e extrato de folhas de *Azadirachta indica* obtido por meio de ultrassom. Em ambos os extratos, as amostras foram liofilizadas, utilizando como solvente a água ultrapura, seguindo a metodologia do próprio laboratório de Bioquímica do Campus de Agrárias Umuaramense (CAU) da Universidade Estadual de Maringá. Após finalizados os procedimentos, as amostras foram diluídas com água a 25% e 50% do extrato obtido.

Com as sementes de picão preto foi formado um lote padrão e homogêneo de 50 sementes, que foram distribuídas em caixa gerbox sobre papel mata-borrão umedecido com 8 mL das seguintes soluções: água ultrapura ou 0% (testemunha); extrato de cotilédones de sementes de *Azadirachta indica* obtido por meio de infusão a 25% e a 50%; e extrato de folhas de *Azadirachta indica* obtido por meio de ultrassom a 25% e a 50%, para cada tratamento foi realizado quatro repetições.

Logo após, as caixas foram levadas à câmara de germinação (BOD), com fotoperíodo 12h claro e 12h escuro e temperatura constante de 25°C, avaliando-se a primeira contagem de germinação, germinação final, índice de velocidade de germinação (IVG), comprimento de plântulas (hipocótilo e raiz), massa seca e massa fresca (hipocótilo e raiz).

RESULTADOS E DISCUSSÃO

Analisando a Tabela 1, pode-se observar que os extratos não apresentaram efeitos significativos para primeira contagem de germinação (PC), germinação final (G), índice de velocidade de germinação (IVG), comprimento de raiz de plântulas (CP $_r$), comprimento de hipocótilo de plântulas (CP $_h$), massa seca da raiz (MS $_r$) e massa seca do hipocótilo (MS $_h$). No entanto, os extratos apresentaram efeitos significativos apenas para os parâmetros de massa fresca da raiz (MF $_r$) e massa fresca do hipocótilo (MF $_h$).

Tabela 1. Médias da análise estatística dos tratamentos, obtidas por meio do teste de Scott-Knott a 5% de probabilidade.

as south in our a size probabilities.									
Trat	PC (%)	G (%)	IVG (hora)	CP _r (cm)	CP _h (cm)	MS _r (mg)	MS _h (mg)	MF _r (mg)	MF _h (mg)
T1	17.0 (a)	66.0 (a)	18.77 (a)	1.62 (a)	3.58 (a)	0.166 (a)	0.7375 (a)	0.6650 (c)	10.597 (a)
T2	5.0 (a)	67.0 (a)	14.60 (a)	2.11 (a)	4.11 (a)	0.433 (a)	0.0225 (a)	0.8825 (b)	12.250 (a)
Т3	1.5 (a)	58.0 (a)	13.35 (a)	1.70 (a)	3.09 (a)	0.250 (a)	0.7250 (a)	0.1900 (c)	5.082 (b)
T4	5.5 (a)	65.0 (a)	14.16 (a)	1.66 (a)	2.76 (a)	0.177 (a)	0.6250 (a)	0.1375 (c)	7.165 (b)
T5	2.0 (a)	68.0 (b)	13.93 (a)	2.70 (a)	3.81 (a)	0.270 (a)	0.7775 (a)	1.5500 (a)	10.050 (a)
C.V. (%)	153.92	14.78	22.02	29.76	18.62	86.69	30.99	53.06	26.77

T1: Água ultrapura (0%), T2: Infusão (25%), T3: Ultrassom (25%), T4: Infusão (50%), T5: Ultrassom (50%).

De acordo com os dados obtidos, para a variável massa fresca da raiz (MF_r), os tratamentos T1, T3 e T4 não apresentaram diferenças estatísticas significativas entre si, mas que por sua vez são inferiores aos tratamentos T2, que também é inferior ao tratamento T5, que apresentou o maior valor de massa fresca de 1,55 mg (ultrassom 50%).

Para a variável massa fresca do hipocótilo (MF_h), os tratamentos T1, T2 e T5 não demonstraram diferenças significativas entre eles, entretanto, seus valores obtidos são superiores aos tratamento T3 e T4, sendo o tratamento T2 (infusão 25%), com o maior valor de massa fresca de 12,25 mg.

Como foi observado a germinação final, índice de velocidade de germinação e as demais variáveis, não apresentaram diferença significativa em nenhum dos tratamentos realizados. Entretanto, um trabalho realizado por Rickli (2011), mostra que o extrato de Nim utilizado como tratamento em sementes de *Bidens pilosa* (planta na qual tem semelhança com a *Bidens subalternans*), obteve um efeito inibitório nesses mesmos parâmetros analisados.

CONCLUSÕES

Considerando os fatores analisados, pode-se concluir que os tratamentos de extratos aquosos do Nim, não provocaram efeito alelopático sobre o picão-preto (*Bidens subalternans*), não demonstrando possível efeito inibitório nos parâmetros de germinação, IVG, comprimento de plântulas e massa seca do hipocótilo e raiz. Entretanto, na variável massa fresca da raiz, no tratamento T5 (ultrassom 50%) ocorreu um aumento significativo, assim como na massa fresca do hipocótilo, no tratamento T2 (infusão 25%) também obteve um aumento considerável.

AGRADECIMENTOS

Agradeço a Universidade Estadual de Maringá pela oportunidade de realizar essa pesquisa, minha orientadora Érica Marusa Pergo Coelho, minha coorientadora Martha Freire da Silva, por todos ensinamentos e suporte, e aos meus amigos pelo auxílio e ao programa de bolsas PIBIC-AF.

REFERÊNCIAS

ADEGAS, F, S.; GAZZIERO, D, L, P.; BONANI, J, C.; PRECINOTTO, C, V.; GARBIATE, M, V; PAES, B, L.; ASSIS, D, N.; OLIVEIRA, R, S. Novo caso de resistência de planta daninha ao glifosato no Brasil: picão-preto (*Bidens subalternans*). **Embrapa soja**. 1.ed. Londrina: Paraná, 2023.

ALBUQUERQUE, M, B.; NETO, S, G.; ALMEIDA, D, J.; MALTA, A, O. Efeito do extrato aquoso das folhas de nim indiano (*Azadirachta indica*) sobre o crescimento incial de plantas daninhas. **Gaia Scienta**. Areia: Paraíba. V. 9. P. 1-6. 2015.

NETO, I, F, S.; RICARDINO, I, E, F.; SANTOS, I, T.; LIMA, E, V, M.; SOUZA, M, N, C.; MARQUES, A, E, F.; SILVA, M, R. Uma revisão da atividade antiviral do nim indiano e seu potencial frente ao novo coronavírus (SARS-CoV-2). **Journal of biologue pharmacy and agricultural management**, v. 17, n. 1. 2021.

NEVES, B, P.; OLIVEIRA, I, P.; NOGUEIRA, J, C, M. Cultivo e Utilização do Nim Indiano. **Embrapa**. 1.ed. Santo Antônio de Goiás: Goiás. 2003.

RICKLI, H, C.; FORTES, A, M, T.; SILVA, P, S, S.; PILATTI, D, M.; HUTT, D, R. Efeito alelopático de extrato aquoso de folhas de *Azadirachta indica* A. Juss. em

10 e 11 de Outubro de 2024

alface, soja, milho, feijão e picão-preto. Semina: **Ciências Agrárias**. Londrina. v. 32, n. 2, p. 473-484, 2011. DOI: 10.5433/1679-0359.

