

RESÍDUO DE GESSO NA REMOÇÃO DO CORANTE AZUL DE METILENO DE SOLUÇÕES AQUOSAS

Flávio Augusto Coutinho Biasuz (PIBIC/CNPq/FA/UEM), Fernando Rodrigues de Carvalho (Orientador). E-mail: frcarvalho@uem.br.

Universidade Estadual de Maringá, Centro de Tecnologia, Umuarama, PR.

Área e subárea do conhecimento: Engenharia Civil, Construção Civil / Materiais e Componentes de Construção

Palavras-chave: Corante; Adsorção; Sustentabilidade.

RESUMO

O azul de metileno (AM) é um corante nocivo para o meio ambiente. O mesmo pode reduzir a entrada de luz solar no meio aquático, diminuindo a fotossíntese e afetando a biota aquática. Descartado sem tratamento, prejudica a vida aquática e a saúde humana. A adsorção é uma técnica viável para tratar efluentes industriais, por ser econômica e fácil de aplicar. Adsorventes alternativos ao carvão ativado, como resíduos de gesso (RG) podem reduzir custos e dar um destino adequado ao resíduo. Neste estudo analisou-se a remoção do AM pelo RG de soluções aquosas em três formas: sem tratamento (RG-t), tratado em meio básico (RG-b) e tratado em meio ácido (RG-a). Para a condição RG-b, o tempo de equilíbrio foi atingido em 5 minutos e foi capaz de remover 69,52% do AM. O resíduo de gesso pode ser um adsorvente viável para remover AM de soluções aquosas.

INTRODUÇÃO

Os resíduos de gesso (RG), comuns na construção civil, já são reutilizados como retardantes de pega do cimento, melhoradores de solo na agricultura e na própria indústria do gesso (NOLLA et al., 2013). Devido à abundância desse resíduo, ele pode ser usado como um adsorvente alternativo de corantes em efluentes industriais. O gesso, por ser inorgânico, tem alta afinidade com íons metálicos, o que levou a estudos sobre seu uso para adsorver íons tóxicos em águas residuais (NISSINEN et al., 2013). No entanto, há poucos estudos sobre o uso de RG quimicamente tratado como adsorvente de corantes como o Azul de Metileno (AM). Neste contexto, este trabalho tem como objetivo avaliar a adsorção de AM por RG em diferentes formas (não tratado, tratado com H₃PO₄ e tratado com NaOH). O

ponto de carga zero (pH_{PCZ}) dos adsorventes foi determinado e foram realizados ensaios de adsorção para avaliar a porcentagem de remoção do AM empregando os diferentes adsorventes.

MATERIAIS E MÉTODOS

Tratamento do resíduo de gesso

Os tratamentos usaram 60g de RG por litro de reagente por 24 horas. A RG-t foi lavada com 1 L de água destilada para remover impurezas, o RG-a usou H_3PO_4 (0,1 mol L^{-1}) e o RG-b, NaOH (0,1 mol L^{-1}). Após a reação, todas as amostras foram lavadas em água destilada até pH 7, secas em estufa a 105 $^{\circ}$ C por 24 horas e pesadas para calcular o rendimento final usando a equação 1, onde M é a massa de RG.

Rendimento (%) =
$$100 - (\frac{M_{inicial} - M_{final}}{M_{inicial}} * 100)$$
 (1)

Ponto de carga zero

O PCZ é uma avaliação da carga superficial dos adsorventes. Para determinar esta carga superficial utilizou-se a relação apresentada pela equação 2. O p H_{pcz} é o pH da solução de KCl de 1,0 mol L^{-1} e p H_{H2O} é o pH da solução aquosa, de ambas as amostras obtidas após centrifugação. O pH das soluções centrifugadas foi medido usando um medidor de pH (Quimis, Q-400MT). O ponto de carga zero (p H_{pcz}) dos adsorventes foi estimado pela equação 3 (BATISTELA et al., 2017).

$$\Delta pH = pH_{KCI} - pH_{H2O} \tag{2}$$

$$pHpcz = 2. pH_{KCI} - pH_{H2O}$$
 (3)

Ensaios de adsorção

Utilizou-se uma solução de AM de 10 mg L⁻¹ com pH 11,0. Em tubos Falcon, foram colocados 10,0 mL de AM e 0,15 g de RG para avaliar a remoção percentual. Os tubos foram agitados mecanicamente (Shaker Marconi 830/A). Após cada tempo, um alíquota da solução de AM foi removida e a absorbância foi medida com um espectrofotômetro UV-Vis (Shimadzu UV-1900i). A porcentagem de remoção foi calculada pela equação 4.

Porcentagem de Remoção =
$$\left(\frac{abs_i - \sum abs_f}{abs_i}\right) \times 100$$
 (4)

RESULTADOS E DISCUSSÃO

As amostras RG-a e RG-b apresentaram resistência na remoção do ácido e da base residual, exigindo mais de dez litros de água destilada e reduzindo o rendimento em relação ao não tratado (RG-t). Obteve-se os seguintes valores: 97,9%, 73,8% e 22,5%, para o não tratado, tratado em ácido e tratado em básico, respectivamente.

A Tabela 1 mostra o p H_{PCZ} , que indica o pH em que a superfície está eletricamente neutra. Verificou-se valores próximos de p H_{PCZ} entre os adsorventes. Considerando que a solução de AM tinha pH 11,0, o p H_{PCZ} < p $H_{solução}$ para todas as condições do RG, indicando que as superfícies dos adsorventes apresentam carga negativa. Este fato favorece a adsorção do MB, pois o mesmo é um corante catiônico.

Tabela 1. Valores de pH_{PCZ} dos adsorventes estudados.

Condições	рН _{ксі}	pH _{H2O}	ΔрН	pH _{PCZ}
RG-t	6,43±0,01	6,43±0,03	-0,01±0,04	6,42±0,04
RG-a	6,17±0,03	6,35±0,02	0,18±0,05	5,99±0,08
RG-b	6,42±0,03	6,56±0,03	0,15±0,02	6,27±0,03

A Figura 1 apresenta o gráfico de remoção percentual do AM para cada condição estudada. Verifica-se que o tempo de equilíbrio foi atingido mais rapidamente para o RG-b, cerca de 5 minutos. Para o RG-t e RG-a foram 30 e 90 minutos, respectivamente. A remoção percentual foi de RG, (69,52±1,62)% para RG-b, (63,48±2,24)% para RG-t e (60,59±1,27)% para RG-a.

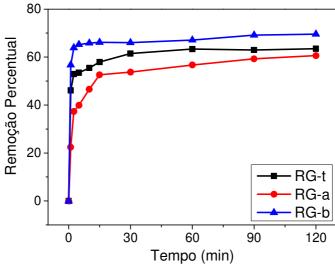


Figura 1. Remoção percentual do AM para cada condição de RG.

O adsorvente RG-b apresentou melhor tempo de equilíbrio e maior remoção percentual do AM. No tratamento básico, o OH tende a deixar cargas residuais negativa na superfície do RG-b, contribuindo para uma atração coulombiana, que por sua vez, tende a aumentar a adsorção do AM. Por outro lado, no tratamento ácido, o H tende a deixar cargas residuais positivas na superfície o RG-a, podendo causar repulsão coulombiana, que por sua vez, contribui para reduzir a adsorção do AM. Tendo em vista que o RG-t não sofreu nenhum tratamento químico, o mesmo obteve uma remoção percentual intermediária, confirmando a explicação dada sobre atração e repulsão coulombiana para o tratamento básico e ácido, respectivamente.

CONCLUSÕES

Para todos as condições o pH_{PCZ} mostrou que em pH 11 as superfícies dos adsorventes estão carregadas negativamente, favorecendo a adsorção do AM. O resíduo de gesso tratado em base (RG-b) atingiu o tempo de equilíbrio mais rapidamente (5 minutos) e removeu maior quantidade do corante AM, sendo 69,52%. O RG pode ser empregado como um adsorvente alternativo para o AM.

AGRADECIMENTOS

CNPq, Capes e a Universidade Estadual de Maringá (UEM).

REFERÊNCIAS

BATISTELA, V. R.; FOGAÇA, L. Z.; FÁVARO, S. L.; CAETANO, W.; FERNANDES-MACHADO, N. R. C.; HIOKA, N. ZnO supported on zeolites: photocatalyst design, microporosity and properties. **Colloids and Surfaces A: Physicochemical and Engineering Aspects**, v. 513, p. 20-27, 2017.

NISSINEN, T.; LI, M.; BRIELLES, N.; MANNA, S. Calcium sulfate hemihydrate-mediated crystallization of gypsum on Ca²⁺ - Activated cellulose thin films. **CrystEngComm**, v. 15, p. 3793–3798, 2013.

NOLLA, A., KORNDÖRFER, G. H., SILVA, C. A. T., SILVA, T. R. B., ZUCARELLI, V.; SILVA, M. A. G. Correcting soil acidity with the use of slags. **African Journal of Agricultural Research**, v. 8, n. 41, p. 5174-80, 2013.

