

PRODUÇÃO DE HIDROGEL DE ÓLEO DE COCO E UTILIZAÇÃO EM EMBUTIDO CÁRNEO COMO SUBSTITUTO DE GORDURA

Larissa Rodrigues da Silva (PIBIC/CNPq/FA/UEM), Emanuelli Rocha Scarabelli (PIBIC/CNPq/FA/UEM), Claudete Regina Alcalde (CCA/PPZ), Natallya Marques Silva (Coorientador), Andresa Carla Feihrmann (Orientador), e-mail: acfeihrmann@uem.br

Universidade Estadual de Maringá, Centro de Tecnologia, Maringá, PR. Ciência de Alimentos - Ciência e Tecnologia de Alimentos - CNPq/CAPES

Palavras-chave: cor instrumental, hambúrguer, oxidação lipídica

RESUMO

Foram elaboradas formulações de hambúrgueres de carne caprina com substituição de toucinho por diferentes porcentagem de hidrogel de óleo de coco tornando o produto mais saudável. Os dados de pH não obtiveram diferença significativa entre as amostras, enquanto para a_w (atividade de água) a amostra T4 não obteve diferença significativa em 120 dias em relação ao controle. Os valores de lipídios e proteínas estão de acordo com o exigido pela legislação. Já a umidade aumentou conforme adicionava-se hidrogel devido a presença de goma guar no preparo da emulsão. O parâmetro de cor a* apresentou diminuição no período de armazenamento. Para a oxidação lipídica houve um aumento, no entanto os valores foram adequados. Dados como esses indicam que a inclusão do hidrogel não interferiu nas análises e manteve os mesmo aspectos do controle (C), portanto a aplicação do hidrogel é viável.

INTRODUÇÃO

Os hambúrgueres são derivados cárneos muito consumidos por serem de fácil preparo. No entanto, sua composição é em sua maioria gordura saturada e o consumo frequente desse tipo de gordura vem sendo relacionado ao desenvolvimento de obesidade e a doenças cardiovasculares (CONDE e BORGES, 2011). Desse modo, o óleo de coco é considerado uma alternativa saudável para melhora o perfil lipídico dos produtos tornando-os mais saudáveis. Assim, o presente estudo teve como objetivo elaborar formulações de hambúrgueres com adição de hidrogel de óleo de coco e avaliar a substituição de gorduras saturadas (toucinho) que estão relacionadas ao colesterol ruim por gorduras mais saudáveis (óleo de coco).

MATERIAIS E MÉTODOS

Os hambúrgueres foram produzidos a partir da mistura de carne caprina (80%) e toucinho suíno (20%), sal e hidrogel de óleo de coco. Na formulação controle (C) foi adicionado apenas toucinho sem o hidrogel e nas outras formulações T1, T2, T3 e T4 o toucinho foi substituído pelo hidrogel de óleo de coco em 25%, 50%, 75% e 100%. As análises de umidade, proteínas e cinzas foram realizadas utilizando-se a metodologia da AOAC (1997). A análise de lipídios foi realizada segundo BLIGH & DYER (1959). O pH das amostras foi mensurado através do phmetro digital portátil (Hanna, HI-99163, Romania). A a_w foi determinada utilizando-se o aparelho marca Aqualab 4TE (Meter Group, USA). A cor instrumental das amostras foi avaliada utilizando o colorímetro portátil CR-400 Konica Minolta. A avaliação lipídica foi pela metodologia de TBARS de acordo com por Raharjo et al. (1992). A análise estatística foi realizada através da análise de variância (ANOVA) e teste de Tukey, utilizando o software SASM.

RESULTADOS E DISCUSSÃO

Os valores de proteína e cinzas não apresentaram diferença significativa entre os tratamentos. Já para análise de lipídios, apenas o tratamento T1 com adição de 25% de hidrogel apresentou diferença. Contudo, os valores de lipídios e proteínas estão de acordo com o exigido pela legislação. Notou-se também um aumento nos teores de umidade dos hambúrgueres à medida que se aumentou a inclusão de hidrogel devido a diluição da goma guar no preparo da emulsão.

Tabela 1 - Análise de composição centesimal dos hambúrgueres com adição de hidrogel de óleo de coco.

Parâmetros	Tratamentos					
	С	T1	T2	T3	T4	
Umidade	62,14±0,97c	63,75±0,52c	66,87±1,15b	70,08±1,14a	70,93±0,37a	
Cinzas	2,08±0,14a	2,31±0,08a	2,30±0,08a	2,28±0,01a	2,14±0,12a	
Lipídios	13,46±0,01b	23,14±0,05a	14,87±0,36b	13,65±0,1b	13,84±1,03b	
Proteína	15,47±0,81a	18,32±2,80a	17,54±1,03a	17,95±0,03a	16,42±3,45a	

Média±Desvio Padrão. Médias seguidas de letras maiúsculas distintas diferem entre si na mesma coluna; Médias seguidas de letras minúsculas distintas diferem entre si na mesma linha pelo teste de Tukey 5%.

Para os valores de TBARS, observou-se um aumento durante o período de armazenamento. As médias variaram entre 0,282 e 1,443 mg de MDA/kg, sendo a maior média encontrada em 120 dias para o tratamento com adição de 75% de hidrogel. Notou-se também que os valores ficaram abaixo de 1,59 mg de MDA/kg de amostra, considerados baixos para percepção sensorial e prejudicial à saúde.

Em relação aos valores de pH, observou-se que não houve diferença significativa entre os tratamentos, ou seja, a inclusão do hidrogel não interferiu na análise e manteve os mesmo aspectos que o hambúrguer com toucinho. Já em relação aos dias de armazenamento, notou-se aumento a partir do dia 30, no entanto, o valor diminuiu após o dia 60, sendo o tratamento com 100% adição de hidrogel o que apresentou maior estabilidade em 120 dias de armazenamento e média de pH entre 5,29 e 6,15.

Para a análise de aw foi possível observar que em 90 dias apenas T3 apresentou-se diferente do controle. Além disso, também apresentou diferença entre os dias de armazenamento e, T4 não demonstrou diferença em relação ao hambúrguer com toucinho em 120 dias de armazenamento.

Tabela 2 - Análise de a_w e pH dos hambúrgueres.

		Tratamentos							
	Tempo								
Parâmetro	(dias)	С	T1	T2	T3	T4			
	0	5,56±0,12aC	5,58±0,02aB	5,60±0,01aC	5,58±0,01aB	5,57±0,02aAB			
	30	6,11±0,01aA	5,89±0,08aA	6,08±0,02aA	6,13±0,02aA	6,15±0,02aA			
	60	5,23±0,11aD	5,23±0,14aC	5,35±0,01aD	5,35±0,05aC	5,29±0,02aB			
	90	5,10±0,06bD	5,29±0,01aC	5,37±0,03aD	5,32±0,03aC	5,29±0,01aB			
рН	120	5,85±0,13aB	5,68±0,04aAB	5,68±0,02aB	5,64±0,06aB	5,97±0,57aAB			
	0	0,979±0,01aA	0,981±0,01aA	0,984±0,01aA	0,983±0,01aB	0,983±0,01aA			
	30	0,985±0,01aA	0,985±0,01aA	0,985±0,01aA	0,990±0,01aA	0,981±0,01aA			
	60	0,980±0,01aA	0,981±0,01aA	0,980±0,01aA	0,983±0,01aB	0,985±0,01aA			
	90	0,984±0,01bA	0,986±0,01abA	0,988±0,01aA	0,986±0,01abA	0,987±0,01abA			
a_w	120	0,984±0,01aA	0,986±0,01aA	0,985±0,01aA	0,985±0,01aAB	0,988±0,01aA			

Média±Desvio Padrão. Médias seguidas de letras maiúsculas distintas diferem entre si na mesma coluna; Médias seguidas de letras minúsculas distintas diferem entre si na mesma linha pelo teste de Tukey 5%.

Em relação a análise de cor, os valores do parâmetro luminosidade obtiveram oscilação ao adicionar o hidrogel e entre os dias de armazenamento. Foi possível observar também que o T3 não apresentou diferença significativa em relação ao controle. A maior média foi de 65,87 para T4, podendo ser justificada pela coloração característica do hidrogel, não apresentando diferença quanto ao tradicional. O parâmetro a* (vermelho-verde) apresentou diminuição no tempo de armazenamento para todos os tratamentos. Já para a coordenada b* (amarelo-azul), os valores foram próximos do amarelo e diminuíram em 120 dias.

CONCLUSÕES

Foi possível concluir que a adição de hidrogel em hambúrgueres de carne caprina apresentaram resultados promissores, visto que, a substituição da gordura animal por vegetal não modificou significativamente os valores das análises realizadas. Portanto, a aplicação de hidrogel em hambúrgueres é favorável e os valores encontrados foram satisfatórios com o objetivo proposto do estudo.

AGRADECIMENTOS

Agradeço a Natallya Marques Silva e minha orientadora Andresa Carla Feihrmann pelo apoio no projeto e ao CNPq pela bolsa concedida.

REFERÊNCIAS

AOAC - Association of Official Analytical Chemists, & Association of Official Agricultural Chemists (US). (1997). Official methods of analysis.

BLIGH, E. G., & DYER, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917.

CONDE, W. L., & BORGES, C. O risco de incidência e persistência da obesidade entre adultos brasileiros segundo seu estado nutricional ao final da adolescência. Rev. bras. epidemiol., São Paulo , v. 14, supl. 1, p. 71-79, Sept. 2011.

RAHARJO, S., SOFOS, J. N., & SCHMIDT, G. R. (1992). Improved speed, specificity, and limit of determination of an aqueous acid extraction thiobarbituric

acid-C18 method for measuring lipid peroxidation in beef. Journal of Agricultural and Food Chemistry, 40(11), 2182-2185.

