

# HIDRÓLISE ENZIMÁTICA DO TRUB E AVALIAÇÃO DE SUAS PROPRIEDADES TECNOLÓGICAS

Vinicius Cunha dos Santos (PIBIC/FA/UEM), Bianka Saraiva Rocha (Coorientadora), Aline Cristini Santos Silva, Paula Toshimi Matumoto Pintro (Orientadora), ptmpintro@uem.br.

Universidade Estadual de Maringá, Centro de Ciências Agrárias, Maringá, PR.

5.00.00.00-4 Ciências Agrárias; 5.07.00.00-6 Ciência e Tecnologia de Alimentos

Palavras-chave: subproduto de cervejaria; reaproveitamento; novos ingredientes.

#### **RESUMO**

O trub é um resíduo cervejeiro com componentes nutricionais importantes, como alto teor de fibras e proteínas, que podem ser utilizadas no enriquecimento de alimentos e na produção de novos ingredientes, como os hidrolisados. O objetivo do trabalho foi aplicar o processo de hidrólise enzimática no trub e avaliar suas propriedades tecnológicas, visando sua caracterização para aplicação em alimentos. O trub foi hidrolisado utilizando a enzima Flavourzyme<sup>®</sup> por 2 horas sob condições de pH e temperatura indicados pelo fabricante. As análises de coloração, densidade aparente, índice de absorção de água, índice de absorção de óleo, capacidade emulsificante e de formação de espuma, estabilidade da emulsão e formação de espuma, bem como a solubilidade proteica em água foram realizadas no trub e no hidrolisado. A hidrólise enzimática do trub otimizou as propriedades funcionais da amostra, tornando mais evidentes propriedades hidrofílicas quando comparado ao trub sem hidrolisar, apresentando maiores resultados em valores de pH extremos.

# INTRODUÇÃO

Embora os compostos amargos do trub tenham limitado sua utilização, sua composição química tem atraído novas pesquisas de reaproveitamento (SARAIVA *et al.*, 2019; 2022). Uma forma de produzir novos ingredientes proteicos e/ou melhorar suas propriedades é a hidrólise enzimática, que possibita agregar ainda mais valor aos produtos gerados. Ela é capaz tanto de gerar compostos de interesse, como os peptídeos, mas também melhorar as propriedades tecnológicas dos hidrolisados, sendo capazes de melhorar características fundamentais de diversas formulações. O objetivo do trabalho foi hidrolisar o trub, um subproduto de cervejaria, e avaliar o











efeito desse processo em suas propriedades tecnológicas, visando demonstrar mais formas de utilização do subproduto.

# MATERIAIS E MÉTODOS

# Matéria-prima e Hidrólise enzimática

O trub foi obtido úmido da produção de cerveja tipo pilsen, foi seco em estufa a 55 °C, moído e peneirado. A hidrólise enzimática do trub foi realizada com a enzima Flavourzyme<sup>®</sup> (Novozymes), na temperatura de 50 °C e pH 7 por 2 horas. Após o processo de hidrólise, foi realizada a inativação da enzima a 100 °C por 10 min. O hidrolisado foi seco em estufa a 40 °C, foi moído e armazenado sob refrigeração. O hidrolisado (H2) e o trub (TB) foram analisados quanto as propriedades tecnológicas.

# Propriedades tecnológicas

Foram analisadas a densidade aparente (MONTEIRO; PRAKASH, 1994) e a coloração (colorímetro Chroma Meter CR-400) com iluminante C pelo sistema CIELab.

O índice de absorção de água (IAA), índice de absorção de óleo (IAO), capacidade de formação de espuma (CFE), estabilidade de formação de espuma (EFE), e a solubilidade proteica em água foram determinados nos valores de pH 2, 4, 6, 8, 10 e 12 de acordo com o guia da Embrapa (SILVA *et al.*, 2022). O índice de atividade emulsificante (IAE) e índice de estabilidade de emulsão (IEE) foram determinados de acordo com Mao e Hua (2012), nos valores de pH 2, 4, 6, 8, 10 e 12.

#### Análise estatística

Os dados foram analisados pelo programa SASM-Agri e as médias comparadas pelo teste de Tukey (p<0,05).

# **RESULTADOS E DISCUSSÃO**

Na Tabela 1 pode-se observar que houve um aumento significativo no IAA do hidrolisado, obtendo valores elevados dessa propriedade, indicando que a amostra é potencial ingrediente de produtos alimentícios viscosos, como sopas, massas e panificados (SILVA et al., 2022). Entretanto, em relação a IAO, não foi observado diferença significativa entre as amostras, que mantiveram valores baixos na propriedade em questão. Em relação a cor instrumental, ambas as amostras possuem luminosidade média, com tendência ao branco, maior em H2 do que em TB. O índice a\* é positivo, indicando leve inclinação ao vermelho das amostras. Por fim, o parâmetro b\* mostra tendência ao amarelo, mais forte na amostra hidrolisada.













Tabela 1 – Cor, densidade, IAA e CAO do trub (TB) e seu hidrolisado de 2 horas (H2).

|                  |    | Tratamentos             |                         |  |  |  |
|------------------|----|-------------------------|-------------------------|--|--|--|
| Análises         | ТВ |                         | H2                      |  |  |  |
|                  | L* | 69,56±0,22 <sup>b</sup> | 71,22±0,19 <sup>a</sup> |  |  |  |
| Cor              | a* | 2,13±0,03 <sup>b</sup>  | 2,68±0,06 <sup>a</sup>  |  |  |  |
|                  | b* | 15,37±0,13 <sup>b</sup> | 24,29±0,08 <sup>a</sup> |  |  |  |
| Densidade (g/mL) |    | 0,59±0,03 <sup>b</sup>  | 0,82±0,01 <sup>a</sup>  |  |  |  |
| IAA (%)          |    | 2,12±0,15 <sup>b</sup>  | 5,23±0,06 <sup>a</sup>  |  |  |  |
| CAO (%)          |    | 0,97±0,10 <sup>a</sup>  | 0,56±0,020 <sup>a</sup> |  |  |  |

Médias seguidas de letras minúsculas diferentes na mesma linha representam diferença significativa (p≤0,05) entre si pelo teste de Tukey.

Em relação a formação de espuma, apresentado na Tabela 2, o hidrolisado apresentou melhores resultados em relação ao TB, principalmente em pH ácido e alcalino.

**Tabela 2** – Formação de espuma, emulsão e solubilidade do trub (TB) e seu hidrolisado de 2 horas (H2) em diferentes valores de pH.

| •         |                        | Variação do pH            |                         |                         |                        |                         |  |  |  |
|-----------|------------------------|---------------------------|-------------------------|-------------------------|------------------------|-------------------------|--|--|--|
|           | 2                      | 4                         | 6                       | 8                       | 10                     | 12                      |  |  |  |
| Formaç    | ão de espuma (%)       |                           |                         |                         |                        |                         |  |  |  |
| TB        | 0,0±0,0 <sup>aB</sup>  | 0,0±0,0 <sup>aA</sup>     | 0,0±0,0 <sup>aA</sup>   | 0,0±0,0 <sup>aA</sup>   | 0,0±0,0 <sup>aA</sup>  | 0,0±0,0 <sup>aB</sup>   |  |  |  |
| H2        | 50±0,0 <sup>bA</sup>   | 0,0±0,0 <sup>dA</sup>     | $0.0\pm0.0^{dA}$        | 12,5±0,0 <sup>cA</sup>  | $0.0\pm0.0^{dA}$       | 101,9±18,0 <sup>a</sup> |  |  |  |
| Estabilio | dade da espuma (       | %)                        |                         |                         |                        |                         |  |  |  |
| TB        | 0,0±0,0 <sup>aA</sup>  | 0,0±0,0 <sup>aA</sup>     | 0,0±0,0 <sup>aA</sup>   | 0,0±0,0 <sup>aA</sup>   | 0,0±0,0 <sup>aA</sup>  | 0,0±0,0 <sup>aB</sup>   |  |  |  |
| H2        | 0,0±0,0 <sup>bA</sup>  | $0.0\pm0.0$ <sup>bA</sup> | $0.0\pm0.0^{\text{bA}}$ | $0.0\pm0.0^{\text{bA}}$ | $0.0\pm0.0$ bA         | 6,25±0,0 <sup>aA</sup>  |  |  |  |
| Emulsão   | )                      |                           |                         |                         |                        |                         |  |  |  |
| TB        | 0,0±0,0 <sup>dB</sup>  | $0.0\pm0.0^{dB}$          | 0,0±0,0 <sup>dB</sup>   | 1,8±0,1 <sup>cB</sup>   | 3,7±0,1 <sup>bA</sup>  | 10,8±0,2 <sup>aB</sup>  |  |  |  |
| H2        | 27,9±0,7 <sup>aA</sup> | 1,8±0,1 <sup>eA</sup>     | 25,8±0,3 <sup>bA</sup>  | 24,1±1,2 <sup>cA</sup>  | 1,8±0,1 <sup>eB</sup>  | 22,4±0,8 <sup>dA</sup>  |  |  |  |
| Estabilio | dade da emulsão        |                           |                         |                         |                        |                         |  |  |  |
| TB        | 0,0±0,0 <sup>dB</sup>  | 0,0±0,0 <sup>dB</sup>     | 0,0±0,0 <sup>dB</sup>   | 0,9±0,1 <sup>cA</sup>   | 1,8±0,1 <sup>bA</sup>  | 3,6±0,1 <sup>ab</sup>   |  |  |  |
| H2        | 3,8±0,1 <sup>Ca</sup>  | 7,3±0,2 <sup>aA</sup>     | 1,8±0,1 <sup>dA</sup>   | 0,9±0,1 <sup>eA</sup>   | 1,8±0,1 <sup>dA</sup>  | 5,8±0,3 <sup>bA</sup>   |  |  |  |
| Solubilio | dade                   |                           |                         |                         |                        |                         |  |  |  |
| TB        | 7,5±0,5 <sup>cdB</sup> | 3,7±0,2 <sup>dB</sup>     | 7,3±0,7 <sup>cdB</sup>  | 13,8±0,5 <sup>cB</sup>  | 42,2±3,2 <sup>bB</sup> | 67,4±4,5 <sup>aB</sup>  |  |  |  |
| H2        | 20,5±1,3 <sup>eA</sup> | 33,3±2,0 <sup>dA</sup>    | 38,5±1,8 <sup>cdA</sup> | 44,6±3,3 <sup>cA</sup>  | 63,4±3,8 <sup>bA</sup> | 88,0±2,0 <sup>aA</sup>  |  |  |  |

Médias seguidas de letras minúsculas diferentes na mesma linha e letras maiúsculas diferentes na mesma coluna representam diferença significativa (p≤0,05) entre si pelo teste de Tukey.













Entretanto, somente se pode observar estabilidade da espuma no pH alcalino, propriedade funcional importante no mercado confeiteiro, como na produção de mousses e coberturas. Já a formação de emulsão, propriedade importante de produtos como hambúrgueres e embutidos, a hidrólise enzimática também melhorou a propriedade na amostra em diversos valores de pH. Em relação a solubilidade, importante na produção de alimentos líquidos, como extratos vegetais, a hidrolise otimizou a propriedade em todas as faixas de pH, alcançando melhores resultados em condições alcalinas (SILVA et al., 2022).

# **CONCLUSÕES**

Pode-se concluir que a hidrólise enzimática do trub melhorou as propriedades funcionais da amostra, como o IAA, solubilidade, capacidade de emulsão e formação de espuma, principalmente em faixas de pH alcalinos. Dessa maneira, a caracterização dessas propriedades é fundamental direcionar o uso desse subproduto cervejeiro como potencial ingrediente de origem vegetal na indústria alimentícia.

#### **AGRADECIMENTOS**

À fundação Araucária pela bolsa de iniciação científica, à Universidade Estadual de Maringá (UEM) e ao grupo de pesquisa em alimentos funcionais (GPAF-UEM).

### REFERÊNCIAS

MAO, X.; HUA, Y. Composition, structure and functional properties of protein concentrates and isolates produced from walnut (*Juglans regia* L.). **International Journal of Molecular Sciences**, v. 13, n. 2, p. 1561-1581, 2012, nov./fev. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291977/. Acesso em: 22 de jan. 2024.

SARAIVA, B. R.; ZANCHETA, J. C.; SVERSUT GIBIN, M.; *et al.* Brewing by-product valorisation: trub debittered for nutritional and quality improvement of pasta. **International Journal of Food Sciences and Nutrition**, v. 73, n. 7, p. 915–926, 2022, mar./jun. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35775312/. Acesso em: 21 de mar. 2024.

SARAIVA, B. R.; ANJO, F. A.; VITAL, A. C. P.; *et al.* Waste from brewing (trub) as a source of protein for the food industry. **International Journal of Food Science & Technology**, v. 54, n. 4, p. 1247-1255, 2019, set./fev. Disponível em: https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/ijfs.14101. Acesso em: 21 de mar. 2024.











SILVA, C.; FELBERG, I.; LIMA, J.; et al. Guia para caracterização tecnológicafuncional de ingredientes proteicos para o mercado de produtos de origem vegetal. Rio de Janeiro: Embrapa Agroindústria de Alimentos, 2022. p. 13-21.









